Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Finite-width effects on threshold corrections to squark and gluino production

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the implication of finite squark and gluino decay widths for threshold resummation of squark and gluino production cross sections at the LHC. We find that for a moderate decay width \( \left( {\varGamma /\overline{m}\lesssim 5\%} \right) \) higher-order soft and Coulomb corrections are appropriately described by NLL calculations in the zero-width limit including the contribution from bound-state resonances below threshold, with the remaining uncertainties due to finite-width effects of a similar order as the ambiguities of threshold-resummed higher-order calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].

    ADS  Google Scholar 

  3. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].

    Article  ADS  Google Scholar 

  4. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].

    Article  ADS  Google Scholar 

  5. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, et al., NNLL resummation for squark-antisquark pair production at the LHC, JHEP 01 (2012) 076 [arXiv:1110.2446] [INSPIRE].

    Article  ADS  Google Scholar 

  6. U. Langenfeld and S.-O. Moch, Higher-order soft corrections to squark hadro-production, Phys. Lett. B 675 (2009) 210 [arXiv:0901.0802] [INSPIRE].

    ADS  Google Scholar 

  7. U. Langenfeld, Threshold improved QCD corrections for stop-antistop production at hadron colliders, JHEP 07 (2011) 052 [arXiv:1011.3341] [INSPIRE].

    Article  ADS  Google Scholar 

  8. U. Langenfeld, S.-O. Moch and T. Pfoh, QCD threshold corrections for gluino pair production at hadron colliders, JHEP 11 (2012) 070 [arXiv:1208.4281] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: all-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Beneke, P. Falgari and C. Schwinn, Colour structure in threshold resummation and squark-antisquark production at NLL, PoS EPS-HEP2009 (2009) 319 [arXiv:0909.3488] [INSPIRE].

  11. M. Beneke, P. Falgari and C. Schwinn, Threshold resummation for pair production of coloured heavy (s)particles at hadron colliders, Nucl. Phys. B 842 (2011) 414 [arXiv:1007.5414] [INSPIRE].

    Article  ADS  Google Scholar 

  12. P. Falgari, C. Schwinn and C. Wever, NLL soft and Coulomb resummation for squark and gluino production at the LHC, JHEP 06 (2012) 052 [arXiv:1202.2260] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  15. N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V.S. Fadin and V.A. Khoze, Threshold behavior of heavy top production in e+e collisions, JETP Lett. 46 (1987) 525 [INSPIRE].

    ADS  Google Scholar 

  18. M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluinonia: energy levels, production and decay, Nucl. Phys. B 831 (2010) 285 [arXiv:0910.2612] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.E. Younkin and S.P. Martin, QCD corrections to stoponium production at hadron colliders, Phys. Rev. D 81 (2010) 055006 [arXiv:0912.4813] [INSPIRE].

    ADS  Google Scholar 

  20. I.I. Bigi, V.S. Fadin and V.A. Khoze, Stop near threshold, Nucl. Phys. B 377 (1992) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  21. K. Hagiwara and H. Yokoya, Bound-state effects on gluino-pair production at hadron colliders, JHEP 10 (2009) 049 [arXiv:0909.3204] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluino pair production at the LHC: the threshold, Nucl. Phys. B 857 (2012) 28 [arXiv:1108.0361] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M.R. Kauth, A. Kress and J.H. Kuhn, Gluino-squark production at the LHC: the threshold, JHEP 12 (2011) 104 [arXiv:1108.0542] [INSPIRE].

    Article  ADS  Google Scholar 

  24. K. Hagiwara, W. Kilian, F. Krauss, T. Ohl, T. Plehn, et al., Supersymmetry simulations with off-shell effects for CERN LHC and ILC, Phys. Rev. D 73 (2006) 055005 [hep-ph/0512260] [INSPIRE].

    ADS  Google Scholar 

  25. D. Berdine, N. Kauer and D. Rainwater, Breakdown of the narrow width approximation for new physics, Phys. Rev. Lett. 99 (2007) 111601 [hep-ph/0703058] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C. Uhlemann and N. Kauer, Narrow-width approximation accuracy, Nucl. Phys. B 814 (2009) 195 [arXiv:0807.4112] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Gigg and P. Richardson, Simulation of finite width effects in physics beyond the standard model, arXiv:0805.3037 [INSPIRE].

  28. W. Hollik, J.M. Lindert and D. Pagani, NLO corrections to squark-squark production and decay at the LHC, arXiv:1207.1071 [INSPIRE].

  29. M. Beneke, A. Chapovsky, A. Signer and G. Zanderighi, Effective theory approach to unstable particle production, Phys. Rev. Lett. 93 (2004) 011602 [hep-ph/0312331] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Beneke, A. Chapovsky, A. Signer and G. Zanderighi, Effective theory calculation of resonant high-energy scattering, Nucl. Phys. B 686 (2004) 205 [hep-ph/0401002] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Beneke, P. Falgari, C. Schwinn, A. Signer and G. Zanderighi, Four-fermion production near the W pair production threshold, Nucl. Phys. B 792 (2008) 89 [arXiv:0707.0773] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S. Actis, M. Beneke, P. Falgari and C. Schwinn, Dominant NNLO corrections to four-fermion production near the W -pair production threshold, Nucl. Phys. B 807 (2009) 1 [arXiv:0807.0102] [INSPIRE].

    Article  ADS  Google Scholar 

  33. W. Beenakker, R. Hopker and P. Zerwas, SUSY QCD decays of squarks and gluinos, Phys. Lett. B 378 (1996) 159 [hep-ph/9602378] [INSPIRE].

    ADS  Google Scholar 

  34. H. Baer, V.D. Barger, D. Karatas and X. Tata, Detecting gluinos at hadron supercolliders, Phys. Rev. D 36 (1987) 96 [INSPIRE].

    ADS  Google Scholar 

  35. H. Baer, X. Tata and J. Woodside, Phenomenology of gluino decays via loops and top quark Yukawa coupling, Phys. Rev. D 42 (1990) 1568 [INSPIRE].

    ADS  Google Scholar 

  36. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    Article  ADS  Google Scholar 

  37. W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  40. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to W W bb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated squark and gluino production to next-to-leading order, arXiv:1211.0286 [INSPIRE].

  43. R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].

    ADS  Google Scholar 

  44. A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].

    Article  ADS  Google Scholar 

  45. V.S. Fadin, V.A. Khoze and A.D. Martin, Interference radiative phenomena in the production of heavy unstable particles, Phys. Rev. D 49 (1994) 2247 [INSPIRE].

    ADS  Google Scholar 

  46. K. Melnikov and O.I. Yakovlev, Top near threshold: all αs corrections are trivial, Phys. Lett. B 324 (1994) 217 [hep-ph/9302311] [INSPIRE].

    ADS  Google Scholar 

  47. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  48. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  49. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  50. M. Beneke, A. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

    Article  ADS  Google Scholar 

  51. N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: an effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].

    Article  Google Scholar 

  52. M. Beneke, B. Jantzen and P. Ruiz-Femenia, Electroweak non-resonant NLO corrections to e+e → W +W \( B\overline{b} \) in the \( t\overline{t} \) resonance region, Nucl. Phys. B 840 (2010) 186 [arXiv:1004.2188] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A.A. Penin and J.H. Piclum, Threshold production of unstable top, JHEP 01 (2012) 034 [arXiv:1110.1970] [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].

    ADS  Google Scholar 

  55. M. Czakon, A. Mitov and G.F. Sterman, Threshold resummation for top-pair hadroproduction to next-to-next-to-leading log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [INSPIRE].

    ADS  Google Scholar 

  56. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

    Article  ADS  Google Scholar 

  57. E.H. Wichmann and C.-H. Woo, Integral representation for the nonrelativistic Coulomb Greens function, J. Math. Phys. 2 (1961) 178.

    Article  MathSciNet  ADS  Google Scholar 

  58. M. Beneke, Perturbative heavy quark-anti-quark systems, hep-ph/9911490 [INSPIRE].

  59. Y. Kats and M.D. Schwartz, Annihilation decays of bound states at the LHC, JHEP 04 (2010)016 [arXiv:0912.0526] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A.H. Hoang, C.J. Reisser and P. Ruiz-Femenia, Phase space matching and finite lifetime effects for top-pair production close to threshold, Phys. Rev. D 82 (2010) 014005 [arXiv:1002.3223] [INSPIRE].

    ADS  Google Scholar 

  61. P. Ruiz-Femenia, Non-resonant effects in the top-antitop resonance region, arXiv:1203.0934 [INSPIRE].

  62. W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].

    Article  ADS  Google Scholar 

  63. T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    Article  ADS  Google Scholar 

  64. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schwinn.

Additional information

ArXiv ePrint: 1211.3408

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falgari, P., Schwinn, C. & Wever, C. Finite-width effects on threshold corrections to squark and gluino production. J. High Energ. Phys. 2013, 85 (2013). https://doi.org/10.1007/JHEP01(2013)085

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)085

Keywords