Abstract
Dark matter scattering off a nucleus has a small probability of inducing an observable ionization through the inelastic excitation of an electron, called the Migdal effect. We use an effective field theory to extend the computation of the Migdal effect in semiconductors to regions of small momentum transfer to the nucleus, where the final state of the nucleus is no longer well described by a plane wave. Our analytical result can be fully quantified by the measurable dynamic structure factor of the semiconductor, which accounts for the vibrational degrees of freedom (phonons) in a crystal. We show that, due to the sum rules obeyed by the structure factor, the inclusive Migdal rate and the shape of the electron recoil spectrum is well captured by approximating the nuclei in the crystal as free ions; however, the exclusive differential rate with respect to energy depositions to the crystal depends on the phonon dynamics encoded in the dynamic structure function of the specific material. Our results now allow the Migdal effect in semiconductors to be evaluated even for the lightest dark matter candidates (mχ ≳ 1 MeV) that can kinematically excite electrons.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, arXiv:2207.03764 [INSPIRE].
PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].
SuperCDMS collaboration, Light Dark Matter Search with a High-Resolution Athermal Phonon Detector Operated Above Ground, Phys. Rev. Lett. 127 (2021) 061801 [arXiv:2007.14289] [INSPIRE].
CRESST collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D 100 (2019) 102002 [arXiv:1904.00498] [INSPIRE].
R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
C. Kouvaris and J. Pradler, Probing sub-GeV Dark Matter with conventional detectors, Phys. Rev. Lett. 118 (2017) 031803 [arXiv:1607.01789] [INSPIRE].
M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].
A. Migdal, Ionizatsiya atomov pri yadernykh reaktsiyakh, Sov. Phys. JETP 9 (1939) 1163.
A. Migdal, Ionizatsiya atomov pri yadernykh reaktsiyakh, ZhETF 9 (1939) 1163.
A.B. Migdal and L.E. Ballentine, Qualitative methods in quantum theory, Physics Today 31 (1978) 60.
J.D. Vergados and H. Ejiri, The role of ionization electrons in direct neutralino detection, Phys. Lett. B 606 (2005) 313 [hep-ph/0401151] [INSPIRE].
C.C. Moustakidis, J.D. Vergados and H. Ejiri, Direct dark matter detection by observing electrons produced in neutralino-nucleus collisions, Nucl. Phys. B 727 (2005) 406 [hep-ph/0507123] [INSPIRE].
R. Bernabei et al., On electromagnetic contributions in WIMP quests, Int. J. Mod. Phys. A 22 (2007) 3155 [arXiv:0706.1421] [INSPIRE].
LUX collaboration, Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data, Phys. Rev. Lett. 122 (2019) 131301 [arXiv:1811.11241] [INSPIRE].
CDEX collaboration, Constraints on Spin-Independent Nucleus Scattering with sub-GeV Weakly Interacting Massive Particle Dark Matter from the CDEX-1B Experiment at the China Jinping Underground Laboratory, Phys. Rev. Lett. 123 (2019) 161301 [arXiv:1905.00354] [INSPIRE].
R. Essig, J. Pradler, M. Sholapurkar and T.-T. Yu, Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors, Phys. Rev. Lett. 124 (2020) 021801 [arXiv:1908.10881] [INSPIRE].
EDELWEISS collaboration, Searching for low-mass dark matter particles with a massive Ge bolometer operated above-ground, Phys. Rev. D 99 (2019) 082003 [arXiv:1901.03588] [INSPIRE].
XENON collaboration, Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T, Phys. Rev. Lett. 123 (2019) 241803 [arXiv:1907.12771] [INSPIRE].
SENSEI collaboration, SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125 (2020) 171802 [arXiv:2004.11378] [INSPIRE].
S. Knapen, J. Kozaczuk and T. Lin, python package for dark matter scattering in dielectric targets, Phys. Rev. D 105 (2022) 015014 [arXiv:2104.12786] [INSPIRE].
COSINE-100 collaboration, Searching for low-mass dark matter via the Migdal effect in COSINE-100, Phys. Rev. D 105 (2022) 042006 [arXiv:2110.05806] [INSPIRE].
SuperCDMS collaboration, A Search for Low-mass Dark Matter via Bremsstrahlung Radiation and the Migdal Effect in SuperCDMS, arXiv:2203.02594 [INSPIRE].
EDELWEISS collaboration, Search for sub-GeV dark matter via the Migdal effect with an EDELWEISS germanium detector with NbSi transition-edge sensors, Phys. Rev. D 106 (2022) 062004 [arXiv:2203.03993] [INSPIRE].
DarkSide collaboration, Search for dark matter-nucleon interactions via Migdal effect with DarkSide-50, arXiv:2207.11967 [INSPIRE].
R. Essig et al., Snowmass2021 Cosmic Frontier: The landscape of low-threshold dark matter direct detection in the next decade, in 2022 Snowmass Summer Study2022 [arXiv:2203.08297] [INSPIRE].
K.D. Nakamura, K. Miuchi, S. Kazama, Y. Shoji, M. Ibe and W. Nakano, Detection capability of the Migdal effect for argon and xenon nuclei with position-sensitive gaseous detectors, PTEP 2021 (2021) 013C01 [arXiv:2009.05939] [INSPIRE].
J. Liao, H. Liu and D. Marfatia, Coherent neutrino scattering and the Migdal effect on the quenching factor, Phys. Rev. D 104 (2021) 015005 [arXiv:2104.01811] [INSPIRE].
N.F. Bell, J.B. Dent, R.F. Lang, J.L. Newstead and A.C. Ritter, Observing the Migdal effect from nuclear recoils of neutral particles with liquid xenon and argon detectors, Phys. Rev. D 105 (2022) 096015 [arXiv:2112.08514] [INSPIRE].
H.M. Araújo et al., The MIGDAL experiment: Measuring a rare atomic process to aid the search for dark matter, arXiv:2207.08284 [INSPIRE].
P. Cox, M.J. Dolan, C. McCabe and H.M. Quiney, Precise predictions and new insights for atomic ionisation from the Migdal effect, arXiv:2208.12222 [INSPIRE].
D. Adams, D. Baxter, H. Day, R. Essig and Y. Kahn, Measuring the Migdal Effect in Semiconductors, arXiv:2210.04917 [INSPIRE].
M.J. Dolan, F. Kahlhoefer and C. McCabe, Directly detecting sub-GeV dark matter with electrons from nuclear scattering, Phys. Rev. Lett. 121 (2018) 101801 [arXiv:1711.09906] [INSPIRE].
N.F. Bell, J.B. Dent, J.L. Newstead, S. Sabharwal and T.J. Weiler, Migdal effect and photon bremsstrahlung in effective field theories of dark matter direct detection and coherent elastic neutrino-nucleus scattering, Phys. Rev. D 101 (2020) 015012 [arXiv:1905.00046] [INSPIRE].
D. Baxter, Y. Kahn and G. Krnjaic, Electron Ionization via Dark Matter-Electron Scattering and the Migdal Effect, Phys. Rev. D 101 (2020) 076014 [arXiv:1908.00012] [INSPIRE].
Z.-L. Liang, L. Zhang, F. Zheng and P. Zhang, Describing Migdal effects in diamond crystal with atom-centered localized Wannier functions, Phys. Rev. D 102 (2020) 043007 [arXiv:1912.13484] [INSPIRE].
C.P. Liu, C.-P. Wu, H.-C. Chi and J.-W. Chen, Model-independent determination of the Migdal effect via photoabsorption, Phys. Rev. D 102 (2020) 121303 [arXiv:2007.10965] [INSPIRE].
Y. Kahn, G. Krnjaic and B. Mandava, Dark Matter Detection with Bound Nuclear Targets: The Poisson Phonon Tail, Phys. Rev. Lett. 127 (2021) 081804 [arXiv:2011.09477] [INSPIRE].
V.V. Flambaum, L. Su, L. Wu and B. Zhu, Constraining sub-GeV dark matter from Migdal and Boosted effects, arXiv:2012.09751 [INSPIRE].
N.F. Bell, J.B. Dent, B. Dutta, S. Ghosh, J. Kumar and J.L. Newstead, Low-mass inelastic dark matter direct detection via the Migdal effect, Phys. Rev. D 104 (2021) 076013 [arXiv:2103.05890] [INSPIRE].
J.F. Acevedo, J. Bramante and A. Goodman, Accelerating composite dark matter discovery with nuclear recoils and the Migdal effect, Phys. Rev. D 105 (2022) 023012 [arXiv:2108.10889] [INSPIRE].
W. Wang, K.-Y. Wu, L. Wu and B. Zhu, Direct detection of spin-dependent sub-GeV dark matter via Migdal effect, Nucl. Phys. B 983 (2022) 115907 [arXiv:2112.06492] [INSPIRE].
C. Blanco, I. Harris, Y. Kahn, B. Lillard and J. Pérez-Ríos, Molecular Migdal effect, Phys. Rev. D 106 (2022) 115015 [arXiv:2208.09002] [INSPIRE].
Z.-L. Liang, C. Mo, F. Zheng and P. Zhang, Describing the Migdal effect with a bremsstrahlung-like process and many-body effects, Phys. Rev. D 104 (2021) 056009 [arXiv:2011.13352] [INSPIRE].
S. Knapen, J. Kozaczuk and T. Lin, Migdal Effect in Semiconductors, Phys. Rev. Lett. 127 (2021) 081805 [arXiv:2011.09496] [INSPIRE].
Z.-L. Liang, C. Mo, F. Zheng and P. Zhang, Phonon-mediated Migdal effect in semiconductor detectors, Phys. Rev. D 106 (2022) 043004 [Erratum ibid. 106 (2022) 109901] [arXiv:2205.03395] [INSPIRE].
G. Tomar, S. Kang and S. Scopel, Low-mass extension of direct detection bounds on WIMP-quark and WIMP-gluon effective interactions using the Migdal effect, arXiv:2210.00199 [INSPIRE].
S. Derenzo, R. Essig, A. Massari, A. Soto and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Scintillating Targets, Phys. Rev. D 96 (2017) 016026 [arXiv:1607.01009] [INSPIRE].
S. Derenzo, E. Bourret, S. Hanrahan and G. Bizarri, Cryogenic Scintillation Properties of n-Type GaAs for the Direct Detection of MeV/c2 Dark Matter, J. Appl. Phys. 123 (2018) 114501 [arXiv:1802.09171] [INSPIRE].
N. Ashcroft and N. Mermin, Solid State Physics, Cengage, (2020).
J. Lindhard, On the properties of a gas of charged particles, Dan. Vid. Selsk Mat.-Fys. Medd. 28 (1954) 8.
S.L. Adler, Quantum theory of the dielectric constant in real solids, Physical Review 126 (1962) 413.
G.L. Squires, Introduction to the theory of thermal neutron scattering, Courier Corporation (1996), https://doi.org/10.1017/CBO9781139107808.
T. Trickle, Z. Zhang, K.M. Zurek, K. Inzani and S.M. Griffin, Multi-Channel Direct Detection of Light Dark Matter: Theoretical Framework, JHEP 03 (2020) 036 [arXiv:1910.08092] [INSPIRE].
B. Campbell-Deem, S. Knapen, T. Lin and E. Villarama, Dark matter direct detection from the single phonon to the nuclear recoil regime, Phys. Rev. D 106 (2022) 036019 [arXiv:2205.02250] [INSPIRE].
H. Schober, An introduction to the theory of nuclear neutron scattering in condensed matter, J. Neutron Research 17 (2014) 109.
W. Marshall, S.W. Lovesey et al., Theory of thermal neutron scattering: the use of neutrons for the investigation of condensed matter, Clarendon Press (1971), https://doi.org/10.1088/0031-9112/23/5/020.
K.V. Berghaus, R. Essig, Y. Hochberg, Y. Shoji and M. Sholapurkar, Phonon background from gamma rays in sub-GeV dark matter detectors, Phys. Rev. D 106 (2022) 023026 [arXiv:2112.09702] [INSPIRE].
G. Nelin and G. Nilsson, Phonon density of states in germanium at 80 k measured by neutron spectrometry, Phys. Rev. B 5 (1972) 3151.
D.S. Kim et al., Temperature-dependent phonon lifetimes and thermal conductivity of silicon by inelastic neutron scattering and ab initio calculations, Phys. Rev. B 102 (2020) 174311.
G. Petretto et al., High-throughput density-functional perturbation theory phonons for inorganic materials, Scientific Data 5 (2018) 180065.
J.M.F. Gunn and M. Warner, The effect of high momentum transfer on scattering from oscillators and crystals, Zeitschrift fur Physik B Condensed Matter 56 (1984) 13.
J. Kozaczuk and T. Lin, Plasmon production from dark matter scattering, Phys. Rev. D 101 (2020) 123012 [arXiv:2003.12077] [INSPIRE].
J.J. Mortensen, L.B. Hansen and K.W. Jacobsen, Real-space grid implementation of the projector augmented wave method, Phys. Rev. B 71 (2005) 035109.
J. Enkovaara et al., Electronic structure calculations with gpaw: a real-space implementation of the projector augmented-wave method, J. Phys. Cond. Matt. 22 (2010) 253202.
R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].
XENON10 collaboration, A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].
XENON collaboration, Light Dark Matter Search with Ionization Signals in XENON1T, Phys. Rev. Lett. 123 (2019) 251801 [arXiv:1907.11485] [INSPIRE].
T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122 (2019) 171801 [arXiv:1810.10543] [INSPIRE].
TESSERACT collaboration, The TESSERACT Dark Matter Project, SNOWMASS LOI, http://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1_CF2-IF1_IF8-120.pdf.
A. Aguilar-Arevalo et al., The Oscura Experiment, arXiv:2202.10518 [INSPIRE].
J. Jackson, Classical Electrodynamics, Wiley (2012).
B.S. Hudson, Vibrational spectroscopy using inelastic neutron scattering: Overview and outlook, Vibrational Spectroscopy 42 (2006) 25.
D.L. Abernathy et al., Design and operation of the wide angular-range chopper spectrometer arcs at the spallation neutron source, Review of Scientific Instruments 83 (2012) 015114.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2210.06490
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Berghaus, K.V., Esposito, A., Essig, R. et al. The Migdal effect in semiconductors for dark matter with masses below ∼ 100 MeV. J. High Energ. Phys. 2023, 23 (2023). https://doi.org/10.1007/JHEP01(2023)023
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2023)023