Abstract
The K3 sigma model based on the \( {{\mathbb{Z}}_2} \)-orbifold of the D 4-torus theory is studied. It is shown that it has an equivalent description in terms of twelve free Majorana fermions, or as a rational conformal field theory based on the affine algebra \( \widehat{\mathfrak{su}}{(2)^6} \). By combining these different viewpoints we show that the \( \mathcal{N} \) = (4, 4) preserving symmetries of this theory are described by the discrete symmetry group \( \mathbb{Z}_2^8 \) : \( {{\mathbb{M}}_{20 }} \). This model therefore accounts for one of the largest maximal symmetry groups of K3 sigma models. The symmetry group involves also generators that, from the orbifold point of view, map untwisted and twisted sector states into one another.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M 24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].
M.C. Cheng, K3 Surfaces, N = 4 Dyons and the Mathieu Group M24, Commun. Num. Theor. Phys. 4 (2010) 623 [arXiv:1005.5415] [INSPIRE].
M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu twining characters for K3, JHEP 09 (2010) 058 [arXiv:1006.0221] [INSPIRE].
M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu Moonshine in the elliptic genus of K3, JHEP 10 (2010) 062 [arXiv:1008.3778] [INSPIRE].
T. Eguchi and K. Hikami, Note on Twisted Elliptic Genus of K3 Surface, Phys. Lett. B 694 (2011) 446 [arXiv:1008.4924] [INSPIRE].
T. Gannon, Much ado about Mathieu, arXiv:1211.5531 [INSPIRE].
T. Creutzig, G. Hoehn and T. Miezaki, The McKay-Thompson series of Mathieu Moonshine modulo two, arXiv:1211.3703.
M.R. Gaberdiel, D. Persson, H. Ronellenfitsch and R. Volpato, Generalised Mathieu Moonshine, Commun. Num. Theor. Phys. 7 (2013), 145-223 [arXiv:1211.7074] [INSPIRE].
M.R. Gaberdiel, D. Persson and R. Volpato, Generalised Moonshine and Holomorphic Orbifolds, arXiv:1302.5425 [INSPIRE].
S.P. Norton, Generalised moonshine, Proc. Symp. Pure Math. 47 (1987) 208.
T. Eguchi and K. Hikami, Twisted Elliptic Genus for K3 and Borcherds Product, Lett. Math. Phys. 102 (2012) 203 [arXiv:1112.5928] [INSPIRE].
M.C. Cheng, J.F. Duncan and J.A. Harvey, Umbral Moonshine, arXiv:1204.2779 [INSPIRE].
T. Eguchi and K. Hikami, N = 2 Moonshine, Phys. Lett. B 717 (2012) 266 [arXiv:1209.0610] [INSPIRE].
T. Eguchi and K. Hikami, Enriques moonshine, J. Phys. A 46 (2013) 312001 [arXiv:1301.5043] [INSPIRE].
M.C. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru et al., Mathieu Moonshine and N =2 String Compactifications, JHEP 09 (2013) 030[arXiv:1306.4981] [INSPIRE].
M.C.N. Cheng, J.F.R. Duncan and J.A. Harvey, Umbral Moonshine and the Niemeier Lattices, arXiv:1307.5793 [INSPIRE].
J.A. Harvey and S. Murthy, Moonshine in Fivebrane Spacetimes, arXiv:1307.7717 [INSPIRE].
S. Harrison, S. Kachru and N.M. Paquette, Twining Genera of (0,4) Supersymmetric σ-models on K3, arXiv:1309.0510 [INSPIRE].
S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988) 183.
S. Kondo, Niemeier lattices, Mathieu groups and finite groups of symplectic automorphisms of K3 surfaces, appendix by S. Mukai, Duke Math. J. 92 (1998) 593.
A. Taormina and K. Wendland, The overarching finite symmetry group of Kummer surfaces in the Mathieu group M 24, JHEP 08 (2013) 125 [arXiv:1107.3834] [INSPIRE].
A. Taormina and K. Wendland, Symmetry-surfing the moduli space of Kummer K3s, arXiv:1303.2931 [INSPIRE].
A. Taormina and K. Wendland, A twist in the M24 moonshine story, arXiv:1303.3221 [INSPIRE].
M.R. Gaberdiel, S. Hohenegger and R. Volpato, Symmetries of K3 σ-models, Commun. Num. Theor. Phys. 6 (2012) 1 [arXiv:1106.4315] [INSPIRE].
M.R. Gaberdiel and R. Volpato, Mathieu Moonshine and Orbifold K3s, arXiv:1206.5143 [INSPIRE].
W. Nahm and K. Wendland, A Hiker’s guide to K3: Aspects of N = (4,4) superconformal field theory with central charge c = 6, Commun. Math. Phys. 216 (2001) 85 [hep-th/9912067] [INSPIRE].
T. Eguchi, H. Ooguri, A. Taormina and S.-K. Yang, Superconformal Algebras and String Compactification on Manifolds with SU(N ) Holonomy, Nucl. Phys. B 315 (1989) 193 [INSPIRE].
P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, U.S.A. (1996).
J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften 290, 3rd edition, Springer-Verlag, New York U.S.A. (1999).
J. Lauer, J. Mas and H.P. Nilles, Twisted sector representations of discrete background symmetries for two-dimensional orbifolds, Nucl. Phys. B 351 (1991) 353 [INSPIRE].
B.R. Greene and M. Plesser, Duality in Calabi-Yau Moduli Space, Nucl. Phys. B 338 (1990) 15 [INSPIRE].
H. Ooguri, Superconformal symmetry and geometry of Ricci flat Kahler manifolds, Int. J. Mod. Phys. A 4 (1989) 4304.
K. Wendland, Moduli spaces of unitary conformal field theories, Ph.D. thesis, University of Bonn, Germany (2000).
P. Goddard and D. Olive, Algebras, lattices and strings, in Vertex operators in mathematics and physics, Math. Sci. Res. Inst. Publ. 3, Springer, Heidelberg, Germany (1984), pp. 51-96.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1309.4127
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gaberdiel, M.R., Taormina, A., Volpato, R. et al. A K3 sigma model with \( \mathbb{Z}_2^8 \) : \( {{\mathbb{M}}_{20 }} \) symmetry. J. High Energ. Phys. 2014, 22 (2014). https://doi.org/10.1007/JHEP02(2014)022
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2014)022