Abstract
We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field — the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to \( Q=\sqrt{\frac{7}{16\pi }}\approx 0.37 \). We argue that this model is a member of a larger family of relativistic non-critical integrable string models. This family includes and extends conventional non-critical strings described by the linear dilaton CFT. Intriguingly, recent lattice data in SU(3) and SU(5) gluodynamics reveals the presence of a massive pseudoscalar axion on the worldsheet of confining flux tubes. The value of the corresponding coupling, as determined from the lattice data, is equal to Q L ≈ 0.38 ± 0.04.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
R. Coldea et al., Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E 8 Symmetry, Science 327 (2010) 177 [INSPIRE].
N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].
S. Dubovsky, R. Flauger and V. Gorbenko, Effective String Theory Revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].
P. Cooper, S. Dubovsky, V. Gorbenko, A. Mohsen and S. Storace, Looking for Integrability on the Worldsheet of Confining Strings, JHEP 04 (2015) 127 [arXiv:1411.0703] [INSPIRE].
M. Teper, Large-N and confining flux tubes as strings — a view from the lattice, Acta Phys. Polon. B 40 (2009) 3249 [arXiv:0912.3339] [INSPIRE].
A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3 + 1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].
K.J. Juge, J. Kuti and C. Morningstar, Fine structure of the QCD string spectrum, Phys. Rev. Lett. 90 (2003) 161601 [hep-lat/0207004] [INSPIRE].
S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].
S. Dubovsky, R. Flauger and V. Gorbenko, Flux Tube Spectra from Approximate Integrability at Low Energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].
M. Daszkiewicz, Z. Hasiewicz and Z. Jaskolski, Noncritical light cone string, Nucl. Phys. B 514 (1998) 437 [hep-th/9706180] [INSPIRE].
A.M. Polyakov, Fine Structure of Strings, Nucl. Phys. B 268 (1986) 406 [INSPIRE].
S.R. Coleman and H.J. Thun, On the Prosaic Origin of the Double Poles in the sine-Gordon S Matrix, Commun. Math. Phys. 61 (1978) 31 [INSPIRE].
A.B. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl. Phys. B 358 (1991) 524 [INSPIRE].
L. Castillejo, R.H. Dalitz and F.J. Dyson, Low’s scattering equation for the charged and neutral scalar theories, Phys. Rev. 101 (1956) 453 [INSPIRE].
L. Mezincescu and P.K. Townsend, Anyons from Strings, Phys. Rev. Lett. 105 (2010) 191601 [arXiv:1008.2334] [INSPIRE].
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].
F. Gliozzi and M. Meineri, Lorentz completion of effective string (and p-brane) action, JHEP 08 (2012) 056 [arXiv:1207.2912] [INSPIRE].
S. Weinberg, Current-commutator theory of multiple pion production, Phys. Rev. Lett. 16 (1966) 879.
C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D=2+1 SU(N) gauge theories, JHEP 05 (2011) 042 [arXiv:1103.5854] [INSPIRE].
M. Caselle, D. Fioravanti, F. Gliozzi and R. Tateo, Quantisation of the effective string with TBA, JHEP 07 (2013) 071 [arXiv:1305.1278] [INSPIRE].
S. Dubovsky, V. Gorbenko and M. Mirbabayi, Natural Tuning: Towards A Proof of Concept, JHEP 09 (2013) 045 [arXiv:1305.6939] [INSPIRE].
M. Shifman and A. Yung, Critical String from Non-Abelian Vortex in Four Dimensions, Phys. Lett. B 750 (2015) 416 [arXiv:1502.00683] [INSPIRE].
S. Weinberg and E. Witten, Limits on Massless Particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].
J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [INSPIRE].
M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].
A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].
P.O. Mazur and V.P. Nair, Strings in QCD and θ Vacua, Nucl. Phys. B 284 (1987) 146 [INSPIRE].
S. Hellerman, S. Maeda, J. Maltz and I. Swanson, Effective String Theory Simplified, JHEP 09 (2014) 183 [arXiv:1405.6197] [INSPIRE].
A. Athenodorou and M. Teper, Closed flux tubes in higher representations and their string description in D = 2 + 1 SU(N ) gauge theories, JHEP 06 (2013) 053 [arXiv:1303.5946] [INSPIRE].
M. Lüscher, Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, Nucl. Phys. B 180 (1981) 317 [INSPIRE].
M. Lüscher and P. Weisz, String excitation energies in SU(N ) gauge theories beyond the free-string approximation, JHEP 07 (2004) 014 [hep-th/0406205] [INSPIRE].
O. Aharony and N. Klinghoffer, Corrections to Nambu-Goto energy levels from the effective string action, JHEP 12 (2010) 058 [arXiv:1008.2648] [INSPIRE].
O. Aharony and Z. Komargodski, The Effective Theory of Long Strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].
M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].
J. Polchinski and J.V. Rocha, Analytic study of small scale structure on cosmic strings, Phys. Rev. D 74 (2006) 083504 [hep-ph/0606205] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1511.01908
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Dubovsky, S., Gorbenko, V. Towards a theory of the QCD string. J. High Energ. Phys. 2016, 22 (2016). https://doi.org/10.1007/JHEP02(2016)022
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2016)022