Abstract
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CEνNS), a process recently measured for the first time at ORNL’s Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CEνNS measurements.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Drukier and L. Stodolsky, Principles and applications of a neutral current detector for neutrino physics and astronomy, Phys. Rev. D 30 (1984) 2295 [INSPIRE].
COHERENT collaboration, Observation of coherent elastic neutrino-nucleus scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
J.I. Collar et al., Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS Spallation Source, Nucl. Instrum. Meth. A 773 (2015) 56 [arXiv:1407.7524] [INSPIRE].
B.J. Scholz, First observation of coherent elastic neutrino-nucleus scattering, Ph.D. thesis, Chicago University, Cham, U.S.A. (2017), arXiv:1904.01155 [INSPIRE].
P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Coherent enlightenment of the neutrino dark side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
J.B. Dent et al., Probing light mediators at ultralow threshold energies with coherent elastic neutrino-nucleus scattering, Phys. Rev. D 96 (2017) 095007 [arXiv:1612.06350] [INSPIRE].
J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
J.B. Dent et al., Accelerator and reactor complementarity in coherent neutrino-nucleus scattering, Phys. Rev. D 97 (2018) 035009 [arXiv:1711.03521] [INSPIRE].
Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066 [arXiv:1802.05171] [INSPIRE].
M. Abdullah et al., Coherent elastic neutrino nucleus scattering as a probe of a Z’ through kinetic and mass mixing effects, Phys. Rev. D 98 (2018) 015005 [arXiv:1803.01224] [INSPIRE].
I. Esteban et al., Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP 08 (2018) 180 [arXiv:1805.04530] [INSPIRE].
D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev. D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].
I.M. Shoemaker, COHERENT search strategy for beyond standard model neutrino interactions, Phys. Rev. D 95 (2017) 115028 [arXiv:1703.05774] [INSPIRE].
C. Giunti, General COHERENT constraints on neutrino non-standard interactions, arXiv:1909.00466 [INSPIRE].
P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP 07 (2018) 037 [arXiv:1804.03660] [INSPIRE].
M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett. 120 (2018) 072501 [arXiv:1710.02730] [INSPIRE].
E. Ciuffoli, J. Evslin, Q. Fu and J. Tang, Extracting nuclear form factors with coherent neutrino scattering, Phys. Rev. D 97 (2018) 113003 [arXiv:1801.02166] [INSPIRE].
E. Ciuffoli, J. Evslin, Q. Fu and J. Tang, Extracting nuclear form factors with coherent neutrino scattering, Phys. Rev. D 97 (2018) 113003 [arXiv:1801.02166] [INSPIRE].
D.K. Papoulias et al., Constraining nuclear physics parameters with current and future COHERENT data, Phys. Lett. B 800 (2020) 135133 [arXiv:1903.03722] [INSPIRE].
M. Cadeddu et al., Neutrino, electroweak and nuclear physics from COHERENT elastic neutrino-nucleus scattering with a new quenching factor, arXiv:1908.06045 [INSPIRE].
D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev. D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring new physics in coherent elastic neutrino-nucleus scattering, JCAP 11 (2018) 016 [arXiv:1805.01798] [INSPIRE].
M. Cadeddu et al., Neutrino charge radii from COHERENT elastic neutrino-nucleus scattering, Phys. Rev. D 98 (2018) 113010 [arXiv:1810.05606] [INSPIRE].
O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP 07 (2019) 103 [arXiv:1905.03750] [INSPIRE].
D.K. Papoulias, COHERENT constraints after the Chicago-3 quenching factor measurement, arXiv:1907.11644 [INSPIRE].
B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett. B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE].
M. Cadeddu and F. Dordei, Reinterpreting the weak mixing angle from atomic parity violation in view of the Cs neutron rms radius measurement from COHERENT, Phys. Rev. D 99 (2019) 033010 [arXiv:1808.10202] [INSPIRE].
X.-R. Huang and L.-W. Chen, Neutron skin in CsI and low-energy effective weak mixing angle from COHERENT data, Phys. Rev. D 100 (2019) 071301 [arXiv:1902.07625] [INSPIRE].
T.S. Kosmas, D.K. Papoulias, M. Tortola and J.W.F. Valle, Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, Phys. Rev. D 96 (2017) 063013 [arXiv:1703.00054] [INSPIRE].
C. Blanco, D. Hooper and P. Machado, Constraining sterile neutrino interpretations of the LSND and MiniBooNE anomalies with coherent neutrino scattering experiments, arXiv:1901.08094 [INSPIRE].
S.-F. Ge and I.M. Shoemaker, Constraining photon portal dark matter with Texono and COHERENT data, JHEP 11 (2018) 066 [arXiv:1710.10889] [INSPIRE].
V. Brdar, W. Rodejohann and X.-J. Xu, Producing a new fermion in coherent elastic neutrino-nucleus scattering: from neutrino mass to dark matter, JHEP 12 (2018) 024 [arXiv:1810.03626] [INSPIRE].
B. Dutta et al., Dark matter signals from timing spectra at neutrino experiments, arXiv:1906.10745 [INSPIRE].
L.M. Sehgal, Differences in the coherent interactions of νe, νμ and ντ, Phys. Lett. B 162 (1985) 370.
R. Garoby et al., The European Spallation Source design, Phys. Scripta 93 (2018) 014001 [INSPIRE].
R.L. Burman and P. Plischke, Neutrino fluxes from a high-intensity spallation neutron facility, Nucl. Instrum. Meth. A 398 (1997) 147 [INSPIRE].
R.L. Burman and P. Plischke, Neutrino flux calculations for the proposed European Spallation Source, FZKA-5834 (1996).
R.E. Prael and H. Lichtenstein, The LAHET Code System, LA-UR-89-30 (1989).
R.L. Burman and W.C. Louis, Neutrino physics at meson factories and spallation neutron sources, J. Phys. G 29 (2003) 2499 [INSPIRE].
D. Pelowitz et al., MCNPX user’s manual version 2.7.0, LA-CP-11-00438 (2011).
GEANT4 collaboration, GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
T.T. Böhlen et al., The FLUKA code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211 [INSPIRE].
K. Batkov, A. Takibayev, L. Zanini and F. Mezei, Unperturbed moderator brightness in pulsed neutron sources, Nucl. Instrum. Meth. A 729 (2013) 500.
D.D. DiJulio et al., Benchmarking GEANT4 for spallation neutron source calculations, J. Phys. Conf. Ser. 746 (2016) 012032.
HARP collaboration, Large-angle production of charged pions with incident pion beams on nuclear targets, Phys. Rev. C 80 (2009) 065207 [arXiv:0907.1428] [INSPIRE].
A. Bolshakova et al., Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VIII: aluminium nuclei and beam momenta from ±3 GeV/c to ±15 GeV/c, Eur. Phys. J. C 72 (2012) 1882 [arXiv:1110.6753] [INSPIRE].
HARP-CDP collaboration, HARP-CDP hadroproduction data: Comparison with FLUKA and GEANT4 simulations, Eur. Phys. J. C 70 (2010) 543 [arXiv:1006.3429] [INSPIRE].
J.C. David, Spallation reactions: a successful interplay between modeling and applications, Eur. Phys. J. A 51 (2015) 68 [arXiv:1505.03282] [INSPIRE].
D. Mancusi et al., On the role of secondary pions in spallation targets, Eur. Phys. J. A 53 (2017) 80 [arXiv:1603.05453] [INSPIRE].
HARP-CDP Group collaboration, Revisiting the ‘LSND anomaly’ I: impact of new data, Phys. Rev. D 85 (2012) 092008 [arXiv:1110.4265] [INSPIRE].
J. Newby, A precision neutrino laboratory at the Spallation Neutron Source, talk given at The Magnificent CEνNS workshop, November 2–3, University of Chicago, Chicago U.S.A. (2018).
Y. Efremenko, SNS neutrino fluxes, talk given at NuEclipse Workshop, August 20–22, University of Tennessee, Knoxville, U.S.A. (2017).
COHERENT collaboration, COHERENT plans for D2 O at the Spallation neutron source, talk given at Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29–August 2, Boston, Massachusetts, U.S.A (2019), arXiv:1910.00630 [INSPIRE].
K. Scholberg, Coherent neutrino scattering, talk given at Topics in Astroparticle and Underground Physics (TAUP 2019), September 8–14, Toyama, Japan (2019).
M.R. Heath, A first search for coherent elastic neutrino-nucleus scattering with liquid argon, Ph.D. thesis, Indiana University, Bloomington, U.S.A. (2019).
COHERENT collaboration, First constraint on coherent elastic neutrino-nucleus scattering in argon, Phys. Rev. D 100 (2019) 115020 [arXiv:1909.05913] [INSPIRE].
C. Amsler et al., Temperature dependence of pure CsI: scintillation light yield and decay time, Nucl. Instrum. Meth. A 480 (2002) 494 [INSPIRE].
M. Moszynski et al., Energy resolution and non-proportionality of the light yield of pure csi at liquid nitrogen temperatures, Nucl. Instrum. Meth. A 537 (2005) 357.
M. Moszynski et al., Application of large area avalanche photodiodes to study scintillators at liquid nitrogen temperatures, Nucl. Instrum. Meth. A 504 (2003) 307.
P. Nadeau, Cryogenic scintillators for rare-event searches, Ph.D. thesis, Queen’s University, Ontario, Canada (2015).
M. Clar et al., Particle detection at cryogenic temperatures with undoped CsI, Nucl. Instrum. Meth. A 901 (2018) 6 [arXiv:1709.04020] [INSPIRE].
J. Liu, M. Yamashita and A.K. Soma, Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin, 2016 JINST 11 P10003 [arXiv:1608.06278] [INSPIRE].
C.L. Woody et al., Readout techniques and radiation damage of undoped cesium iodide, IEEE Trans. Nucl. Sci. 37 (1990) 492 [INSPIRE].
X. Zhang et al., Tracking with the fastest light in the JUNO central detector, Radiat. Detect. Technol. Meth. 2 (2018) 13
V.B. Mikhailik et al., Luminescence and scintillation properties of CsI — a potential cryogenic scintillator, Phys. Status Solidi B 252 (2015) 804 [arXiv:1411.6246] [INSPIRE].
S.S. Gridin et al., Channels of energy losses and relaxation in CSi:a scintillators (a= Tl, In), IEEE Trans. Nucl. Sci. 61 (2014) 246.
P. Dorenbos, Light output and energy resolution of Ce3+ -doped scintillators, Nucl. Instrum. Meth. A 486 (2002) 208 .
G. Angloher et al., A CsI low temperature detector for dark matter search, Astropart. Phys. 84 (2016) 70 [arXiv:1602.08884] [INSPIRE].
C.K. Ong, K.S. Song, R. Monnier and A.M. Stoneham, Electronic structure and luminescence of CsI:Na, J. Phys. C 12 (1979) 4641.
J.I. Collar, A.R.L. Kavner and C.M. Lewis, Response of CsI[Na] to nuclear recoils: impact on coherent elastic neutrino-nucleus scattering (CEνNS), Phys. Rev. D 100 (2019) 033003 [arXiv:1907.04828] [INSPIRE].
Radiation Monitoring Devices, RMD Inc. Watertown, U.S.A. .
Y. Jin et al., Study of a pure CsI crystal readout by APD for Belle II end cap ECL upgrade, Nucl. Instrum. Meth. A 824 (2016) 691 [INSPIRE].
Y. Jin Study of a scintillation counter consisting of a pure CsI crystal and avalanche photodiodes, Master’s thesis, University of Tokyo, Tokyo, Japan (2015).
N. Osakabe et al., Saturation of multiplication mechanism in silicon avalanche photodiodes used for single electron detection, Rev. Sci. Instrum. 69 (1998) 2898.
L. Yang et al., Performance of a large-area avalanche photodiode at low temperature for scintillation detection, Nucl. Instrum. Meth. A 508 (2003) 388 [INSPIRE].
A. Wright, The photomultiplier handbook, Oxford University Press, Oxford U.K. (2017). [78] https://www.luminnotech.com/products.
R. Neilson et al., Characterization of large area APDs for the EXO-200 detector, Nucl. Instrum. Meth. A 608 (2009) 68 [arXiv:0906.2499] [INSPIRE].
Specification sheet for R8520-406/R8520-506 PMTs, https://www.hamamatsu.com.
M. Ibe, W. Nakano, Y. Shoji and K. Suzuki, Migdal Effect in Dark Matter Direct Detection Experiments, JHEP 03 (2018) 194 [arXiv:1707.07258] [INSPIRE].
S.A. Ponomarenko et al., Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators, Nature Sci. Rep. 4 (2014) 6549.
T.Y. Starikova et al., A novel highly efficient nanostructured organosilicon luminophore with unusually fast photoluminescence, J. Mater. Chem. C 4 (2016) 4699.
S. A. Ponomarenko et al., Nanostructured organosilicon luminophores for efficient and fast elementary particles photodetectors, Proc. SPIE 10344 (2017) 49.
S.A. Ponomarenko et al., Nanostructured organosilicon luminophores as a new concept of nanomaterials for highly efficient down-conversion of light, Proc. SPIE 9545 (2015) 8.
O. Borshchev, N. Surin, M. Skorotetcky and S. Ponomarenko., High-efficient optical wavelength shifters: design, properties, application, INEOS OPEN 2 (2019) 112.
M. McClish et al., Characterization of very large silicon avalanche photodiodes, IEEE Symp. Conf. Rec. Nucl. Sci. 2 (2004) 1270.
Y. Yanagida and H. Yoshimoto, Reusing KTeV CsI crystals for J-PARC KOTO experiment, PoS(KAON09)021.
DAMIC collaboration, Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMICexperiment at SNOLAB, Phys. Rev. D 94 (2016) 082006 [arXiv:1607.07410] [INSPIRE].
DAMIC collaboration, Constraints on light dark matter particles interacting with electrons from DAMIC at SNOLAB, Phys. Rev. Lett. 123 (2019) 181802 [arXiv:1907.12628] [INSPIRE].
SENSEI collaboration, SENSEI: direct-detection constraints on sub-GeV dark matter from a shallow underground run using a prototype skipper-CCD, Phys. Rev. Lett. 122 (2019) 161801 [arXiv:1901.10478] [INSPIRE].
CONNIE collaboration, Exploring low-energy neutrino physics with the coherent neutrino nucleus interaction experiment, Phys. Rev. D 100 (2019) 092005 [arXiv:1906.02200] [INSPIRE].
P. Privitera, The DAMIC-M dark matter experiment, talk given at Topics in Astroparticle and Underground Physics (TAUP 2019), September 8–14, Toyama, Japan (2019).
R.D. Ryan, Precision measurements of the ionization energy and its temperature variation in high purity silicon radiation detectors, IEEE Trans. Nucl. Sci. 20 (1973) 473.
SENSEI collaboration, Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].
A.E. Chavarria et al., Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector, Phys. Rev. D 94 (2016) 082007 [arXiv:1608.00957] [INSPIRE].
J.I. Collar, Applications of an 88Y /Be photo-neutron calibration source to dark matter and neutrino experiments, Phys. Rev. Lett. 110 (2013) 211101 [arXiv:1303.2686] [INSPIRE].
C.W. Leitz et al., Development of germanium charge-coupled devices, Proc. SPIE 10709 (2018) 1070908.
J.J. Gomez-Cadenas, Status and prospects of the NEXT experiment for neutrinoless double beta decay searches, 2019, arXiv:1906.01743 [INSPIRE].
P. Sorensen, Electron train backgrounds in liquid xenon dark matter search detectors are indeed due to thermalization and trapping, arXiv:1702.04805 [INSPIRE].
J. Xu et al., Electron extraction efficiency study for dual-phase xenon dark matter experiments, Phys. Rev. D 99 (2019) 103024 [arXiv:1904.02885] [INSPIRE].
RED-100 collaboration, First ground-level laboratory test of the two-phase xenon emission detector RED-100, arXiv:1910.06190 [INSPIRE].
NEXT collaboration, Ionization and scintillation of nuclear recoils in gaseous xenon, Nucl. Instrum. Meth. A 793 (2015) 62 [arXiv:1409.2853] [INSPIRE].
NEXT collaboration, Calibration of the NEXT-White detector using 83m Kr decays, 2018 JINST 13 P10014 [arXiv:1804.01780] [INSPIRE].
J.J. Gomez-Cadenas, F. Monrabal Capilla and P. Ferrario, High pressure gas xenon TPCs for double beta decay searches, Front. in Phys. 7 (2019) 51 [arXiv:1903.02435] [INSPIRE].
NEXT collaboration, The Next White (NEW) detector, 2018 JINST 13 P12010 [arXiv:1804.02409] [INSPIRE].
P.S. Barbeau, J.I. Collar and O. Tench, Large-mass ultra-low noise germanium detectors: performance and applications in neutrino and astroparticle physics, JCAP 09 (2007) 009 [nucl-ex/0701012] [INSPIRE].
Majorana collaboration, A search for neutrinoless double-beta decay in 76 Ge with 26 kg-yr of exposure from the Majorana DEMONSTRATOR, Phys. Rev. C 100 (2019) 025501 [arXiv:1902.02299] [INSPIRE].
GERDA collaboration, Improved limit on neutrinoless double-β decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
H. T.-K. Wong, Taiwan EXperiment On NeutrinO — History and prospects, The Universe 3 (2015) 22 [arXiv:1608.00306] [INSPIRE].
J. Hakenmüller et al., Neutron-induced background in the CONUS experiment, Eur. Phys. J. C 79 (2019) 699 [arXiv:1903.09269] [INSPIRE].
CoGeNT collaboration, CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors, Phys. Rev. D 88 (2013) 012002 [arXiv:1208.5737] [INSPIRE].
CDEX collaboration, Limits on light weakly interacting massive particles from the first 102.8 kg × day data of the CDEX-10 experiment, Phys. Rev. Lett. 120 (2018) 241301 [arXiv:1802.09016] [INSPIRE].
G. Ilie, Mirion Ge detectors, talk given at the 3rd PIRE-GEMADARC workshop , 5 December, Knoxville, U.S.A. (2018),
R. Cooper, D. Radford, P. Hausladen and K. Lagergren, A novel hpge detector for gamma-ray tracking and imaging, Nucl. Instrum. Meth. A 665 (2011) 25.
C. Awe et al., Liquid scintillator response to proton recoils in the 10–100 keV range, Phys. Rev. C 98 (2018) 045802 [arXiv:1804.06457] [INSPIRE].
B.J. Scholz et al., Measurement of the low-energy quenching factor in germanium using an 88 Y/Be photoneutron source, Phys. Rev. D 94 (2016) 122003 [arXiv:1608.03588] [INSPIRE].
W.J. Bolte et al., Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils, Nucl. Instrum. Meth. A 577 (2007) 569 [astro-ph/0503398] [INSPIRE].
COUPP collaboration, Improved spin-dependent WIMP limits from a bubble chamber, Science 319 (2008) 933 [arXiv:0804.2886] [INSPIRE].
PICO collaboration, Dark matter search results from the complete exposure of the PICO-60 C3 F8 bubble chamber, Phys. Rev. D 100 (2019) 022001 [arXiv:1902.04031] [INSPIRE].
PICO collaboration, Data-driven modeling of electron recoil nucleation in PICO C3 F8 bubble chambers, Phys. Rev. D 100 (2019) 082006 [arXiv:1905.12522] [INSPIRE].
D. Baxter et al., First demonstration of a scintillating xenon bubble chamber for detecting dark matter and coherent elastic neutrino-nucleus scattering, Phys. Rev. Lett. 118 (2017) 231301 [arXiv:1702.08861] [INSPIRE].
E. Dahl, Progress on liquid-noble bubble chambers for CEνNS, talk given at The magnificent CEνNS workshop, November 2–3, University of Chicago, U.S.A. (2018).
COUPP collaboration, Direct measurement of the bubble nucleation energy threshold in a CF3 I bubble chamber, Phys. Rev. D 88 (2013) 021101 [arXiv:1304.6001] [INSPIRE].
P. Coloma et al., Curtailing the dark side in non-standard neutrino interactions, JHEP 04 (2017) 116 [arXiv:1701.04828] [INSPIRE].
A.N. Khan and W. Rodejohann, New physics from COHERENT data with an improved quenching factor, Phys. Rev. D 100 (2019) 113003 [arXiv:1907.12444] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
J. Erler and R. Ferro-Hernández, Weak mixing angle in the Thomson limit, JHEP 03 (2018) 196 [arXiv:1712.09146] [INSPIRE].
C.J. Horowitz, K.J. Coakley and D.N. McKinsey, Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector, Phys. Rev. D 68 (2003) 023005 [astro-ph/0302071] [INSPIRE].
R.H. Helm, Inelastic and elastic scattering of 187 Mev electrons from selected even-even nuclei, Phys. Rev. 104 (1956) 1466 [INSPIRE].
F. Izraelevitch et al., A measurement of the ionization efficiency of nuclear recoils in silicon, 2017 JINST 12 P06014 [arXiv:1702.00873] [INSPIRE].
S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [Erratum ibid. D 95 (2017) 079903] [arXiv:1604.05772] [INSPIRE].
M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].
P. Bakhti and Y. Farzan, Shedding light on LMA-dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50, JHEP 07 (2014) 064 [arXiv:1403.0744] [INSPIRE].
J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].
NuTeV collaboration, A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].
CHARM collaboration, Experimental verification of the universality of νe and νμ coupling to the neutral weak current, Phys. Lett. B 180 (1986) 303 [INSPIRE].
Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].
Y. Farzan and I.M. Shoemaker, Lepton flavor violating non-standard interactions via light mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].
COHERENT collaboration, COHERENT collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].
C.S. Wood et al., Measurement of parity nonconservation and an anapole moment in cesium, Science 275 (1997) 1759 [INSPIRE].
V.A. Dzuba, J.C. Berengut, V.V. Flambaum and B. Roberts, Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109 (2012) 203003 [arXiv:1207.5864] [INSPIRE].
SLAC E158 collaboration, Precision measurement of the weak mixing angle in Moller scattering, Phys. Rev. Lett. 95 (2005) 081601 [hep-ex/0504049] [INSPIRE].
PVDIS collaboration, Measurement of parity violation in electron–quark scattering, Nature 506 (2014) 67.
C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys. 87 (2015) 531 [arXiv:1403.6344] [INSPIRE].
G. Degrassi, A. Sirlin and W.J. Marciano, Effective electromagnetic form-factor of the neutrino, Phys. Rev. D 39 (1989) 287 [INSPIRE].
P. Vogel and J. Engel, Neutrino electromagnetic form-factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].
K.A. Kouzakov and A.I. Studenikin, Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering, Phys. Rev. D 95 (2017) 055013 [Erratum ibid. D 96 (2017) 099904] [arXiv:1703.00401] [INSPIRE].
J. Bernabeu, L.G. Cabral-Rosetti, J. Papavassiliou and J. Vidal, On the charge radius of the neutrino, Phys. Rev. D 62 (2000) 113012 [hep-ph/0008114] [INSPIRE].
J. Bernabeu, J. Papavassiliou and J. Vidal, On the observability of the neutrino charge radius, Phys. Rev. Lett. 89 (2002) 101802 [Erratum ibid. 89 (2002) 229902] [hep-ph/0206015] [INSPIRE].
J. Bernabeu, J. Papavassiliou and J. Vidal, The neutrino charge radius is a physical observable, Nucl. Phys. B 680 (2004) 450 [hep-ph/0210055] [INSPIRE].
A.G. Beda et al., The results of search for the neutrino magnetic moment in GEMMA experiment, Adv. High Energy Phys. 2012 (2012) 350150.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.00762
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Baxter, D., Collar, J.I., Coloma, P. et al. Coherent elastic neutrino-nucleus scattering at the European Spallation Source. J. High Energ. Phys. 2020, 123 (2020). https://doi.org/10.1007/JHEP02(2020)123
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2020)123