Abstract
It was recently argued that string theory on AdS3 × S3 × 𝕋4 with one unit (k = 1) of NS-NS flux is exactly dual to the symmetric orbifold CFT SymN (𝕋4). In this paper we show how to directly relate the n-point correlators of the two sides to one another. In particular, we argue that the correlators of the world-sheet theory are delta-function- localised in string moduli space to those configurations that allow for a holomorphic covering map of the S2-boundary of AdS3 by the world-sheet. This striking feature can be seen both from a careful Ward identity analysis, as well as from semi-classically exact AdS3 solutions that are pinned to the boundary. The world-sheet correlators therefore have exactly the same structure as in the Lunin-Mathur construction of symmetric orbifold CFT correlators in terms of a covering surface — which now gets identified with the world-sheet. Together with the results of [1, 2] this essentially demonstrates how the k = 1 AdS3 string theory becomes equivalent to the spacetime orbifold CFT in the genus expansion.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS3 , JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The worldsheet dual of the symmetric product CFT, JHEP 04 (2019) 103 [arXiv:1812.01007] [INSPIRE].
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].
H. Ooguri and C. Vafa, World sheet derivation of a large N duality, Nucl. Phys. B 641 (2002) 3 [hep-th/0205297] [INSPIRE].
N. Berkovits, H. Ooguri and C. Vafa, On the world sheet derivation of large N dualities for the superstring, Commun. Math. Phys. 252 (2004) 259 [hep-th/0310118] [INSPIRE].
R. Gopakumar, From free fields to AdS, Phys. Rev. D 70 (2004) 025009 [hep-th/0308184] [INSPIRE].
R. Gopakumar, From free fields to AdS. II, Phys. Rev. D 70 (2004) 025010 [hep-th/0402063] [INSPIRE].
R. Gopakumar, From free fields to AdS. III, Phys. Rev. D 72 (2005) 066008 [hep-th/0504229] [INSPIRE].
D. Gaiotto and L. Rastelli, A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model, JHEP 07 (2005) 053 [hep-th/0312196] [INSPIRE].
N. Berkovits, A new limit of the AdS5 × S5 σ-model, JHEP 08 (2007) 011 [hep-th/0703282] [INSPIRE].
N. Berkovits and C. Vafa, Towards a worldsheet derivation of the Maldacena conjecture, JHEP 03 (2008) 031 [arXiv:0711.1799] [INSPIRE].
N. Berkovits, Perturbative super-Yang-Mills from the topological AdS5 × S5 σ-model, JHEP 09 (2008) 088 [arXiv:0806.1960] [INSPIRE].
N. Berkovits, Sketching a proof of the Maldacena conjecture at small radius, JHEP 06 (2019) 111 [arXiv:1903.08264] [INSPIRE].
H. Nastase, Towards deriving the AdS/CFT correspondence, arXiv:1812.10347 [INSPIRE].
J.M. Maldacena and H. Ooguri, Strings in AdS3 and SL(2, R) WZW model. Part 1. The spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS3 and the SL(2, R) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].
J.M. Maldacena and H. Ooguri, Strings in AdS3 and the SL(2, R) WZW model. Part 3. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
M.R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS3 from the worldsheet, JHEP 07 (2017) 090 [arXiv:1704.08665] [INSPIRE].
K. Ferreira, M.R. Gaberdiel and J.I. Jottar, Higher spins on AdS3 from the worldsheet, JHEP 07 (2017) 131 [arXiv:1704.08667] [INSPIRE].
L. Eberhardt and M.R. Gaberdiel, String theory on AdS3 and the symmetric orbifold of Liouville theory, Nucl. Phys. B 948 (2019) 114774 [arXiv:1903.00421] [INSPIRE].
E. Del Giudice, P. Di Vecchia and S. Fubini, General properties of the dual resonance model, Annals Phys. 70 (1972) 378 [INSPIRE].
O. Lunin and S.D. Mathur, Correlation functions for M N /SN orbifolds, Commun. Math. Phys. 219 (2001) 399 [hep-th/0006196] [INSPIRE].
O. Lunin and S.D. Mathur, Three point functions for M N /SN orbifolds with N = 4 supersymmetry, Commun. Math. Phys. 227 (2002) 385 [hep-th/0103169] [INSPIRE].
A. Pakman, L. Rastelli and S.S. Razamat, Diagrams for symmetric product orbifolds, JHEP 10 (2009) 034 [arXiv:0905.3448] [INSPIRE].
A. Pakman, L. Rastelli and S.S. Razamat, Extremal correlators and Hurwitz numbers in symmetric product orbifolds, Phys. Rev. D 80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].
N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].
A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS3 , Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].
D. Israel, C. Kounnas and M.P. Petropoulos, Superstrings on NS5 backgrounds, deformed AdS3 and holography, JHEP 10 (2003) 028 [hep-th/0306053] [INSPIRE].
S. Raju, Counting giant gravitons in AdS3 , Phys. Rev. D 77 (2008) 046012 [arXiv:0709.1171] [INSPIRE].
N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].
G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS3 at ‖=1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].
A. Giveon, D. Kutasov, E. Rabinovici and A. Sever, Phases of quantum gravity in AdS3 and linear dilaton backgrounds, Nucl. Phys. B 719 (2005) 3 [hep-th/0503121] [INSPIRE].
J. de Boer, H. Ooguri, H. Robins and J. Tannenhauser, String theory on AdS3 , JHEP 12 (1998) 026 [hep-th/9812046] [INSPIRE].
S. Hamidi and C. Vafa, Interactions on orbifolds, Nucl. Phys. B 279 (1987) 465 [INSPIRE].
L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The conformal field theory of orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].
D. Friedan, Introduction to Polyakov’s string theory, EFI-82-50-CHICAGO, (1982) [INSPIRE].
A. Dei, L. Eberhardt and M.R. Gaberdiel, Three-point functions in AdS3 /CFT2 holography, JHEP 12 (2019) 012 [arXiv:1907.13144] [INSPIRE].
M. Wakimoto, Fock representations of the affine Lie algebra \( {A}_1^{(1)} \), Commun. Math. Phys. 104 (1986) 605 [INSPIRE].
J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].
B. Ponsot, V. Schomerus and J. Teschner, Branes in the Euclidean AdS3 , JHEP 02 (2002) 016 [hep-th/0112198] [INSPIRE].
P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York, NY, U.S.A. (1997) [INSPIRE].
S.S. Razamat, On a worldsheet dual of the Gaussian matrix model, JHEP 07 (2008) 026 [arXiv:0803.2681] [INSPIRE].
R. Gopakumar, What is the simplest gauge-string duality?, arXiv:1104.2386 [INSPIRE].
A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
J.M. Maldacena, Black holes in string theory, Ph.D. thesis, Princeton U., Princeton, NJ, U.S.A. (1996) [hep-th/9607235] [INSPIRE].
J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].
B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].
E. Witten, Spacetime reconstruction, talk at the John Schwarz 60th birthday symposium, http://theory.caltech.edu/jhs60/witten/1.html, November 2001.
A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].
O. Aharony, Z. Komargodski and S.S. Razamat, On the worldsheet theories of strings dual to free large N gauge theories, JHEP 05 (2006) 016 [hep-th/0602226] [INSPIRE].
R. Gopakumar and R. Pius, Correlators in the simplest gauge-string duality, JHEP 03 (2013) 175 [arXiv:1212.1236] [INSPIRE].
O. Aharony, J.R. David, R. Gopakumar, Z. Komargodski and S.S. Razamat, Comments on worldsheet theories dual to free large N gauge theories, Phys. Rev. D 75 (2007) 106006 [hep-th/0703141] [INSPIRE].
E.P. Verlinde and H.L. Verlinde, A solution of two-dimensional topological quantum gravity, Nucl. Phys. B 348 (1991) 457 [INSPIRE].
J. Distler, 2D quantum gravity, topological field theory and the multicritical matrix models, Nucl. Phys. B 342 (1990) 523 [INSPIRE].
M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].
K. Costello and D. Gaiotto, Twisted holography, arXiv:1812.09257 [INSPIRE].
D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161 [hep-th/9212149] [INSPIRE].
D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].
P. Hořava, Topological strings and QCD in two-dimensions, in NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, Cargese, France, 12–21 May 1993 [hep-th/9311156] [INSPIRE].
S. Cordes, G.W. Moore and S. Ramgoolam, Large N 2D Yang-Mills theory and topological string theory, Commun. Math. Phys. 185 (1997) 543 [hep-th/9402107] [INSPIRE].
D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].
D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, Higher spins & strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].
E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].
L. Eberhardt and K. Ferreira, The plane-wave spectrum from the worldsheet, JHEP 10 (2018) 109 [arXiv:1805.12155] [INSPIRE].
M. Cho, S. Collier and X. Yin, Strings in Ramond-Ramond backgrounds from the Neveu-Schwarz-Ramond formalism, arXiv:1811.00032 [INSPIRE].
J. Teschner, Crossing symmetry in the \( {\mathrm{H}}_3^{+} \) WZNW model, Phys. Lett. B 521 (2001) 127 [hep-th/0108121] [INSPIRE].
T. Eguchi and H. Ooguri, Conformal and current algebras on general Riemann surface, Nucl. Phys. B 282 (1987) 308 [INSPIRE].
D. Bernard, On the Wess-Zumino-Witten models on Riemann surfaces, Nucl. Phys. B 309 (1988) 145 [INSPIRE].
L. Eberhardt and M.R. Gaberdiel, Strings on AdS3 × S3 × S3 × S1 , JHEP 06 (2019) 035 [arXiv:1904.01585] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS3 × S3 × S3 × S1 , JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.00378
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Eberhardt, L., Gaberdiel, M.R. & Gopakumar, R. Deriving the AdS3/CFT2 correspondence. J. High Energ. Phys. 2020, 136 (2020). https://doi.org/10.1007/JHEP02(2020)136
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2020)136