Abstract
The transverse momentum distribution of the \( t\overline{t} \) system is of both experimental and theoretical interest. In the presence of azimuthally asymmetric divergences, pursuing resummation at high logarithmic precision is rather demanding in general. In this paper, we propose the projected transverse momentum spectrum \( \textrm{d}{\sigma}_{t\overline{t}}/\textrm{d}{q}_{\tau } \), which is derived from the classical \( {\overrightarrow{q}}_{\textrm{T}} \) spectrum by integrating out the rejection component \( {q}_{\tau_{\perp }} \) with respect to a reference unit vector \( \overrightarrow{\tau} \), to serve as an alternative solution to remove these asymmetric divergences, in addition to the azimuthally averaged case \( \textrm{d}{\sigma}_{t\overline{t}}/\textrm{d}\mid {\overrightarrow{q}}_{\textrm{T}}\mid \). In the context of the effective field theories, SCETII and HQET, we will demonstrate that in spite of the \( {q}_{\tau_{\perp }} \) integrations, the leading asymptotic terms of \( \textrm{d}{\sigma}_{t\overline{t}}/\textrm{d}{q}_{\tau } \) still observe the factorisation pattern in terms of the hard, beam, and soft functions in the vicinity of qτ = 0 GeV. Then, with the help of the renormalisation group equation techniques, we carry out the resummation at NLL+NLO, N2LL+N2LO, and approximate N2LL′+N2LO accuracy on three observables of interest, \( \textrm{d}{\sigma}_{t\overline{t}}/d{q}_{\textrm{T},\textrm{in}},\textrm{d}{\sigma}_{t\overline{t}}/\textrm{d}{q}_{\textrm{T},\textrm{out}} \), and \( \textrm{d}{\sigma}_{t\overline{t}}/d\Delta {\phi}_{t\overline{t}} \), within the domain \( {M}_{t\overline{t}} \) ≥ 400 GeV. The first two cases are obtained by choosing \( \overrightarrow{\tau} \) parallel and perpendicular to the top quark transverse momentum, respectively. The azimuthal de-correlation \( \Delta {\phi}_{t\overline{t}} \) of the \( t\overline{t} \) pair is evaluated through its kinematical connection to qT,out. This is the first time the azimuthal spectrum \( \Delta {\phi}_{t\overline{t}} \) is appraised at or beyond the N2LL level including a consistent treatment of both beam collinear and soft radiation.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section using dilepton events in pp collisions at \( \sqrt{s} \) = 5.02 TeV with the ATLAS detector, ATLAS-CONF-2021-003 (2021).
ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s} \) = 5.02 TeV with the ATLAS detector, CERN-EP-2022-119 (2022) [INSPIRE].
CMS collaboration, Measurement of the inclusive \( t\overline{t} \) cross section in pp collisions at \( \sqrt{s} \) = 5.02 TeV using final states with at least one charged lepton, JHEP 03 (2018) 115 [arXiv:1711.03143] [INSPIRE].
CMS collaboration, Measurement of the inclusive \( t\overline{t} \) production cross section in proton-proton collisions at \( \sqrt{s} \) = 5.02 TeV, JHEP 04 (2022) 144 [arXiv:2112.09114] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) Production Cross Section in the All-Jet Final State in pp Collisions at \( \sqrt{s} \) = 7 TeV, JHEP 05 (2013) 065 [arXiv:1302.0508] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the eμ channel in proton-proton collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 029 [arXiv:1603.02303] [INSPIRE].
ATLAS and CMS collaborations, Combination of inclusive top-quark pair production cross-section measurements using ATLAS and CMS data at \( \sqrt{s} \) = 7 and 8 TeV, CERN-EP-2021-222 (2022) [arXiv:2205.13830] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the all-jets final state in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 76 (2016) 128 [arXiv:1509.06076] [INSPIRE].
CMS collaboration, Measurements of the \( t\overline{t} \) production cross section in lepton + jets final states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections, Eur. Phys. J. C 77 (2017) 15 [arXiv:1602.09024] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section and lepton differential distributions in eμ dilepton events from pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 528 [arXiv:1910.08819] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in the lepton+jets channel at \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, Phys. Lett. B 810 (2020) 135797 [arXiv:2006.13076] [INSPIRE].
ATLAS collaboration, Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, JHEP 01 (2021) 033 [arXiv:2006.09274] [INSPIRE].
CMS collaboration, Measurement of the top quark pair production cross section in dilepton final states containing one τ lepton in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP 02 (2020) 191 [arXiv:1911.13204] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section at 13 TeV in the all-jets final state.
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 368 [arXiv:1812.10505] [INSPIRE].
CMS collaboration, Measurement of differential \( t\overline{t} \) production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 104 (2021) 092013 [arXiv:2108.02803] [INSPIRE].
CMS collaboration, First measurement of the top quark pair production cross section in proton-proton collisions at \( \sqrt{s} \) = 13.6 TeV, CMS-PAS-TOP-22-012.
CMS collaboration, Measurement of \( t\overline{t} \) normalised multi-differential cross sections in pp collisions at \( \sqrt{s} \) = 13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions, Eur. Phys. J. C 80 (2020) 658 [arXiv:1904.05237] [INSPIRE].
ATLAS collaboration, Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at \( \sqrt{s} \) = 13 TeV, JHEP 06 (2022) 063 [arXiv:2202.12134] [INSPIRE].
CMS collaboration, Measurement of differential \( t\overline{t} \) production cross sections using top quarks at large transverse momenta in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 103 (2021) 052008 [arXiv:2008.07860] [INSPIRE].
CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in pp collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-TOP-20-006.
P. Nason, S. Dawson and R.K. Ellis, The Total Cross-Section for the Production of Heavy Quarks in Hadronic Collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].
W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD Corrections to Heavy Quark Production in \( p\overline{p} \) Collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].
W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].
M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].
M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(\( {\alpha}_S^4 \)), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].
M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].
M. Czakon, P. Fiedler, D. Heymes and A. Mitov, NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron, JHEP 05 (2016) 034 [arXiv:1601.05375] [INSPIRE].
M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, CAVENDISH-HEP-17-08 (2017) [arXiv:1704.08551] [INSPIRE].
M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].
S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli and H. Sargsyan, Top-quark pair hadroproduction at next-to-next-to-leading order in QCD, Phys. Rev. D 99 (2019) 051501 [arXiv:1901.04005] [INSPIRE].
S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair hadroproduction at NNLO: differential predictions with the \( \overline{MS} \) mass, JHEP 08 (2020) 027 [arXiv:2005.00557] [INSPIRE].
J. Gao, C.S. Li and H.X. Zhu, Top Quark Decay at Next-to-Next-to Leading Order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].
M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left({\alpha}_s^2\right) \) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].
S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair production at the LHC: Fully differential QCD predictions at NNLO, JHEP 07 (2019) 100 [arXiv:1906.06535] [INSPIRE].
A. Behring, M. Czakon, A. Mitov, A.S. Papanastasiou and R. Poncelet, Higher order corrections to spin correlations in top quark pair production at the LHC, Phys. Rev. Lett. 123 (2019) 082001 [arXiv:1901.05407] [INSPIRE].
M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to leptonic observables in top-quark pair production and decay, JHEP 05 (2021) 212 [arXiv:2008.11133] [INSPIRE].
W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].
J.H. Kühn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37 [hep-ph/0610335] [INSPIRE].
W. Bernreuther, M. Fuecker and Z.-G. Si, Weak interaction corrections to hadronic top quark pair production, Phys. Rev. D 74 (2006) 113005 [hep-ph/0610334] [INSPIRE].
J.H. Kühn, A. Scharf and P. Uwer, Weak Interactions in Top-Quark Pair Production at Hadron Colliders: An Update, Phys. Rev. D 91 (2015) 014020 [arXiv:1305.5773] [INSPIRE].
W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].
D. Pagani, I. Tsinikos and M. Zaro, The impact of the photon PDF and electroweak corrections on \( t\overline{t} \) distributions, Eur. Phys. J. C 76 (2016) 479 [arXiv:1606.01915] [INSPIRE].
C. Gütschow, J.M. Lindert and M. Schönherr, Multi-jet merged top-pair production including electroweak corrections, Eur. Phys. J. C 78 (2018) 317 [arXiv:1803.00950] [INSPIRE].
A. Denner and M. Pellen, NLO electroweak corrections to off-shell top-antitop production with leptonic decays at the LHC, JHEP 08 (2016) 155 [arXiv:1607.05571] [INSPIRE].
N. Kidonakis, NNNLO soft-gluon corrections for the top-quark pT and rapidity distributions, Phys. Rev. D 91 (2015) 031501 [arXiv:1411.2633] [INSPIRE].
N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].
N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].
N. Kidonakis, NNNLO soft-gluon corrections for the top-antitop pair production cross section, Phys. Rev. D 90 (2014) 014006 [arXiv:1405.7046] [INSPIRE].
N. Kidonakis, Top-quark double-differential distributions at approximate N3LO, Phys. Rev. D 101 (2020) 074006 [arXiv:1912.10362] [INSPIRE].
V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].
A. Ferroglia, B.D. Pecjak and L.L. Yang, Soft-gluon resummation for boosted top-quark production at hadron colliders, Phys. Rev. D 86 (2012) 034010 [arXiv:1205.3662] [INSPIRE].
A. Ferroglia, S. Marzani, B.D. Pecjak and L.L. Yang, Boosted top production: factorization and resummation for single-particle inclusive distributions, JHEP 01 (2014) 028 [arXiv:1310.3836] [INSPIRE].
B.D. Pecjak, D.J. Scott, X. Wang and L.L. Yang, Resummed differential cross sections for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 202001 [arXiv:1601.07020] [INSPIRE].
M. Czakon et al., Resummation for (boosted) top-quark pair production at NNLO + NNLL’ in QCD, JHEP 05 (2018) 149 [arXiv:1803.07623] [INSPIRE].
P. Hinderer, F. Ringer, G.F. Sterman and W. Vogelsang, Toward NNLL Threshold Resummation for Hadron Pair Production in Hadronic Collisions, Phys. Rev. D 91 (2015) 014016 [arXiv:1411.3149] [INSPIRE].
M. Beneke, M. Czakon, P. Falgari, A. Mitov and C. Schwinn, Threshold expansion of the \( gg\left(q\overline{q}\right)\to \overline{QQ}+X \) cross section at O(\( {\alpha}_s^4 \)), Phys. Lett. B 690 (2010) 483 [arXiv:0911.5166] [INSPIRE].
M. Beneke, P. Falgari and C. Schwinn, Threshold resummation for pair production of coloured heavy (s)particles at hadron colliders, Nucl. Phys. B 842 (2011) 414 [arXiv:1007.5414] [INSPIRE].
M. Beneke, P. Falgari, S. Klein and C. Schwinn, Hadronic top-quark pair production with NNLL threshold resummation, Nucl. Phys. B 855 (2012) 695 [arXiv:1109.1536] [INSPIRE].
M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].
J. Piclum and C. Schwinn, Soft-gluon and Coulomb corrections to hadronic top-quark pair production beyond NNLO, JHEP 03 (2018) 164 [arXiv:1801.05788] [INSPIRE].
W.-L. Ju, G. Wang, X. Wang, X. Xu, Y. Xu and L.L. Yang, Top quark pair production near threshold: single/double distributions and mass determination, JHEP 06 (2020) 158 [arXiv:2004.03088] [INSPIRE].
W.-L. Ju, G. Wang, X. Wang, X. Xu, Y. Xu and L.L. Yang, Invariant-mass distribution of top-quark pairs and top-quark mass determination, Chin. Phys. C 44 (2020) 091001 [arXiv:1908.02179] [INSPIRE].
H.X. Zhu, C.S. Li, H.T. Li, D.Y. Shao and L.L. Yang, Transverse-momentum resummation for top-quark pairs at hadron colliders, Phys. Rev. Lett. 110 (2013) 082001 [arXiv:1208.5774] [INSPIRE].
H.T. Li, C.S. Li, D.Y. Shao, L.L. Yang and H.X. Zhu, Top quark pair production at small transverse momentum in hadronic collisions, Phys. Rev. D 88 (2013) 074004 [arXiv:1307.2464] [INSPIRE].
S. Catani, M. Grazzini and A. Torre, Transverse-momentum resummation for heavy-quark hadroproduction, Nucl. Phys. B 890 (2014) 518 [arXiv:1408.4564] [INSPIRE].
S. Catani, M. Grazzini and H. Sargsyan, Azimuthal asymmetries in QCD hard scattering: infrared safe but divergent, JHEP 06 (2017) 017 [arXiv:1703.08468] [INSPIRE].
S. Catani, M. Grazzini and H. Sargsyan, Transverse-momentum resummation for top-quark pair production at the LHC, JHEP 11 (2018) 061 [arXiv:1806.01601] [INSPIRE].
S. Alioli, A. Broggio and M.A. Lim, Zero-jettiness resummation for top-quark pair production at the LHC, JHEP 01 (2022) 066 [arXiv:2111.03632] [INSPIRE].
J. Mazzitelli, P.F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi, Next-to-Next-to-Leading Order Event Generation for Top-Quark Pair Production, Phys. Rev. Lett. 127 (2021) 062001 [arXiv:2012.14267] [INSPIRE].
J. Mazzitelli, P.F. Monni, P. Nason, E. Re, M. Wiesemann and G. Zanderighi, Top-pair production at the LHC with MINNLOPS, JHEP 04 (2022) 079 [arXiv:2112.12135] [INSPIRE].
P.M. Nadolsky, C. Balazs, E.L. Berger and C.P. Yuan, Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders, Phys. Rev. D 76 (2007) 013008 [hep-ph/0702003] [INSPIRE].
S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].
J.C. Collins, Intrinsic transverse momentum: Nongauge theories, Phys. Rev. D 21 (1980) 2962 [INSPIRE].
G.F. Sterman, Mass Divergences in Annihilation Processes. I. Origin and Nature of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev. D 17 (1978) 2773 [INSPIRE].
L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13 (1959) 181 [INSPIRE].
S. Coleman and R.E. Norton, Singularities in the physical region, Nuovo Cim. 38 (1965) 438 [INSPIRE].
M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].
V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts in Modern Physics 250 (2012) [DOI] [INSPIRE].
B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xsγ in effective field theory., Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with nonAbelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].
B.O. Lange and M. Neubert, Factorization and the soft overlap contribution to heavy to light form-factors, Nucl. Phys. B 690 (2004) 249 [hep-ph/0311345] [INSPIRE].
M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].
E. Eichten and B.R. Hill, An Effective Field Theory for the Calculation of Matrix Elements Involving Heavy Quarks, Phys. Lett. B 234 (1990) 511 [INSPIRE].
H. Georgi, An Effective Field Theory for Heavy Quarks at Low-energies, Phys. Lett. B 240 (1990) 447 [INSPIRE].
B. Grinstein, The Static Quark Effective Theory, Nucl. Phys. B 339 (1990) 253 [INSPIRE].
M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].
J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].
J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].
Y. Li, D. Neill and H.X. Zhu, An exponential regulator for rapidity divergences, Nucl. Phys. B 960 (2020) 115193 [arXiv:1604.00392] [INSPIRE].
Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].
G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [INSPIRE].
M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].
P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].
W. Bizoń, P.F. Monni, E. Re, L. Rottoli and P. Torrielli, Momentum-space resummation for transverse observables and the Higgs p⊥ at N3LL+NNLO, JHEP 02 (2018) 108 [arXiv:1705.09127] [INSPIRE].
T. Becher and M. Neubert, Drell-Yan Production at Small qT, Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low qT And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].
T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].
B. Ananthanarayan, A. Pal, S. Ramanan and R. Sarkar, Unveiling Regions in multi-scale Feynman Integrals using Singularities and Power Geometry, Eur. Phys. J. C 79 (2019) 57 [arXiv:1810.06270] [INSPIRE].
J. Plenter and G. Rodrigo, Asymptotic expansions through the loop-tree duality, Eur. Phys. J. C 81 (2021) 320 [arXiv:2005.02119] [INSPIRE].
G. Heinrich et al., Expansion by regions with pySecDec, Comput. Phys. Commun. 273 (2022) 108267 [arXiv:2108.10807] [INSPIRE].
J.C. Collins and G.F. Sterman, Soft Partons in QCD, Nucl. Phys. B 185 (1981) 172 [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].
J.C. Collins, Proof of factorization for diffractive hard scattering, Phys. Rev. D 57 (1998) 3051 [hep-ph/9709499] [INSPIRE].
J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].
J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].
M.D. Schwartz, K. Yan and H.X. Zhu, Factorization Violation and Scale Invariance, Phys. Rev. D 97 (2018) 096017 [arXiv:1801.01138] [INSPIRE].
S.-J. Chang and S.-K. Ma, Feynman rules and quantum electrodynamics at infinite momentum, Phys. Rev. 180 (1969) 1506 [INSPIRE].
G.F. Sterman, Mass Divergences in Annihilation Processes. II. Cancellation of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev. D 17 (1978) 2789 [INSPIRE].
A. Mitov and G. Sterman, Final state interactions in single- and multi-particle inclusive cross sections for hadronic collisions, Phys. Rev. D 86 (2012) 114038 [arXiv:1209.5798] [INSPIRE].
I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].
T.C. Rogers and P.J. Mulders, No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons, Phys. Rev. D 81 (2010) 094006 [arXiv:1001.2977] [INSPIRE].
J.F. Donoghue and D. Wyler, On Regge kinematics in SCET, Phys. Rev. D 81 (2010) 114023 [arXiv:0908.4559] [INSPIRE].
C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective Theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].
S. Fleming, The role of Glauber exchange in soft collinear effective theory and the Balitsky-Fadin-Kuraev-Lipatov Equation, Phys. Lett. B 735 (2014) 266 [arXiv:1404.5672] [INSPIRE].
I. Moult, S. Raman, G. Ridgway and I.W. Stewart, Anomalous Dimensions from Soft Regge Constants, MIT-CTP 5448 (2022) [INSPIRE].
R. Bonciani, S. Catani, M. Grazzini, H. Sargsyan and A. Torre, The qT subtraction method for top quark production at hadron colliders, Eur. Phys. J. C 75 (2015) 581 [arXiv:1508.03585] [INSPIRE].
J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [INSPIRE].
R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [INSPIRE].
M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: All-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].
A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].
S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].
S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].
L. Chen, M. Czakon and R. Poncelet, Polarized double-virtual amplitudes for heavy-quark pair production, JHEP 03 (2018) 085 [arXiv:1712.08075] [INSPIRE].
S. Di Vita, T. Gehrmann, S. Laporta, P. Mastrolia, A. Primo and U. Schubert, Master integrals for the NNLO virtual corrections to \( q\overline{q}\to t\overline{t} \) scattering in QCD: the non-planar graphs, JHEP 06 (2019) 117 [arXiv:1904.10964] [INSPIRE].
S. Badger, E. Chaubey, H.B. Hartanto and R. Marzucca, Two-loop leading colour QCD helicity amplitudes for top quark pair production in the gluon fusion channel, JHEP 06 (2021) 163 [arXiv:2102.13450] [INSPIRE].
M.K. Mandal, P. Mastrolia, J. Ronca and W.J. Bobadilla Torres, Two-loop scattering amplitude for heavy-quark pair production through light-quark annihilation in QCD, JHEP 09 (2022) 129 [arXiv:2204.03466] [INSPIRE].
M.-X. Luo, X. Wang, X. Xu, L.L. Yang, T.-Z. Yang and H.X. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP 10 (2019) 083 [arXiv:1908.03831] [INSPIRE].
M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Gluon Case, JHEP 01 (2020) 040 [arXiv:1909.13820] [INSPIRE].
M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs and FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].
M.-x. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001 [arXiv:1912.05778] [INSPIRE].
D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi and A. Vladimirov, Linearly polarized gluons at next-to-next-to leading order and the Higgs transverse momentum distribution, JHEP 11 (2019) 121 [arXiv:1907.03780] [INSPIRE].
S. Catani and P.K. Dhani, Collinear functions for QCD resummations, arXiv:2208.05840 [INSPIRE].
R. Angeles-Martinez, M. Czakon and S. Sapeta, NNLO soft function for top quark pair production at small transverse momentum, JHEP 10 (2018) 201 [arXiv:1809.01459] [INSPIRE].
S. Catani, I. Fabre, M. Grazzini and S. Kallweit, \( t\overline{t}H \) production at NNLO: the flavour off-diagonal channels, Eur. Phys. J. C 81 (2021) 491 [arXiv:2102.03256] [INSPIRE].
A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. B Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An Effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
M. Beneke, Perturbative heavy quark-anti-quark systems, PoS hf8 (1999) 009 [hep-ph/9911490] [INSPIRE].
M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [INSPIRE].
W.-L. Ju and L.L. Yang, Resummation of soft and Coulomb corrections for tth production at the LHC, JHEP 06 (2019) 050 [arXiv:1904.08744] [INSPIRE].
S. Fleming and A.K. Leibovich, The Resummed Photon Spectrum in Radiative Upsilon Decays, Phys. Rev. Lett. 90 (2003) 032001 [hep-ph/0211303] [INSPIRE].
S. Fleming and A.K. Leibovich, The Photon Spectrum in Upsilon Decays, Phys. Rev. D 67 (2003) 074035 [hep-ph/0212094] [INSPIRE].
T. Becher and G. Bell, The gluon jet function at two-loop order, Phys. Lett. B 695 (2011) 252 [arXiv:1008.1936] [INSPIRE].
P. Banerjee, P.K. Dhani and V. Ravindran, Gluon jet function at three loops in QCD, Phys. Rev. D 98 (2018) 094016 [arXiv:1805.02637] [INSPIRE].
T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B} \) → Xsγ decay rate with a cut on photon energy: II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].
R. Brüser, Z.L. Liu and M. Stahlhofen, Three-Loop Quark Jet Function, Phys. Rev. Lett. 121 (2018) 072003 [arXiv:1804.09722] [INSPIRE].
T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet Processes, JHEP 11 (2016) 019 [arXiv:1605.02737] [INSPIRE].
M. Balsiger, T. Becher and A. Ferroglia, Resummation of non-global logarithms in cross sections with massive particles, JHEP 09 (2020) 029 [arXiv:2006.00014] [INSPIRE].
S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [INSPIRE].
V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].
J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].
E. Bejdakic, Feynman integrals, hypergeometric functions and nested sums, Ph.D. Thesis, Fakultät für Physik, Universität Bielefeld (2009) [INSPIRE].
M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].
M. Czakon, MBasymptotics.
M. Ochman and T. Riemann, MBsums — a Mathematica package for the representation of Mellin-Barnes integrals by multiple sums, Acta Phys. Polon. B 46 (2015) 2117 [arXiv:1511.01323] [INSPIRE].
T. Gleisberg, S. Hoeche, F. Krauss, A. Schalicke, S. Schumann and J.-C. Winter, SHERPA 1. alpha: A Proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].
T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].
A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
J.M. Henn, G.P. Korchemsky and B. Mistlberger, The full four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and QCD, JHEP 04 (2020) 018 [arXiv:1911.10174] [INSPIRE].
A. von Manteuffel, E. Panzer and R.M. Schabinger, Cusp and collinear anomalous dimensions in four-loop QCD from form factors, Phys. Rev. Lett. 124 (2020) 162001 [arXiv:2002.04617] [INSPIRE].
F. Herzog, S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Five-loop contributions to low-N non-singlet anomalous dimensions in QCD, Phys. Lett. B 790 (2019) 436 [arXiv:1812.11818] [INSPIRE].
Z.L. Liu and N. Schalch, Infrared Singularities of Multileg QCD Amplitudes with a Massive Parton at Three Loops, Phys. Rev. Lett. 129 (2022) 232001 [arXiv:2207.02864] [INSPIRE].
A.A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions, Phys. Rev. Lett. 118 (2017) 062001 [arXiv:1610.05791] [INSPIRE].
M.A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N3LO, JHEP 09 (2020) 146 [arXiv:2006.05329] [INSPIRE].
G. Das, S.-O. Moch and A. Vogt, Soft corrections to inclusive deep-inelastic scattering at four loops and beyond, JHEP 03 (2020) 116 [arXiv:1912.12920] [INSPIRE].
C. Duhr, B. Mistlberger and G. Vita, Soft integrals and soft anomalous dimensions at N3LO and beyond, JHEP 09 (2022) 155 [arXiv:2205.04493] [INSPIRE].
C. Duhr, B. Mistlberger and G. Vita, Four-Loop Rapidity Anomalous Dimension and Event Shapes to Fourth Logarithmic Order, Phys. Rev. Lett. 129 (2022) 162001 [arXiv:2205.02242] [INSPIRE].
I. Moult, H.X. Zhu and Y.J. Zhu, The four loop QCD rapidity anomalous dimension, JHEP 08 (2022) 280 [arXiv:2205.02249] [INSPIRE].
D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].
D. Kang, C. Lee and V. Vaidya, A fast and accurate method for perturbative resummation of transverse momentum-dependent observables, JHEP 04 (2018) 149 [arXiv:1710.00078] [INSPIRE].
A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Effective Hamiltonians for ∆S = 1 and ∆B = 1 nonleptonic decays beyond the leading logarithmic approximation, Nucl. Phys. B 370 (1992) 69 [INSPIRE].
G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, NLL + NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].
W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N3LL+NNLO, JHEP 12 (2018) 132 [arXiv:1805.05916] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
J. Ablinger, J. Blümlein, M. Round and C. Schneider, Numerical Implementation of Harmonic Polylogarithms to Weight w = 8, Comput. Phys. Commun. 240 (2019) 189 [arXiv:1809.07084] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
E. Bothmann et al., Accelerating LHC event generation with simplified pilot runs and fast PDFs, Eur. Phys. J. C 82 (2022) 1128 [arXiv:2209.00843] [INSPIRE].
T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
T. Hahn, Routines for the diagonalization of complex matrices, MPP-2006-85 (2006) [physics/0607103] [INSPIRE].
A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].
C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].
F. Krauss, R. Kühn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].
S. Catani, S. Dittmaier, M.H. Seymour and Z. Trocsanyi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].
M. Schönherr, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J. C 78 (2018) 119 [arXiv:1712.07975] [INSPIRE].
W.-L. Ju and M. Schönherr, The qT and ∆ϕ spectra in W and Z production at the LHC at N3LL′ + N2LO, JHEP 10 (2021) 088 [arXiv:2106.11260] [INSPIRE].
A. Gao, J.K.L. Michel, I.W. Stewart and Z. Sun, A Better Angle on Hadron Transverse Momentum Distributions at the EIC, MIT-CTP 5462 (2022) [arXiv:2209.11211] [INSPIRE].
Y.-T. Chien, D.Y. Shao and B. Wu, Resummation of Boson-Jet Correlation at Hadron Colliders, JHEP 11 (2019) 025 [arXiv:1905.01335] [INSPIRE].
R.F. del Castillo, M.G. Echevarria, Y. Makris and I. Scimemi, Transverse momentum dependent distributions in dijet and heavy hadron pair production at EIC, JHEP 03 (2022) 047 [arXiv:2111.03703] [INSPIRE].
X.-B. Tong, B.-W. Xiao and Y.-Y. Zhang, Harmonics of Parton Saturation in Lepton-Jet Correlations at the EIC, arXiv:2211.01647 [INSPIRE].
D.Y. Shao, C. Zhang, J. Zhou and Y. Zhou, Azimuthal asymmetries of muon pair production in ultraperipheral heavy ion collisions, arXiv:2212.05775 [INSPIRE].
L. Chen et al., Study of Isolated-photon and Jet Momentum Imbalance in pp and PbPb collisions, Nucl. Phys. B 933 (2018) 306 [arXiv:1803.10533] [INSPIRE].
Y.-T. Chien, R. Rahn, S. Schrijnder van Velzen, D.Y. Shao, W.J. Waalewijn and B. Wu, Recoil-free azimuthal angle for precision boson-jet correlation, Phys. Lett. B 815 (2021) 136124 [arXiv:2005.12279] [INSPIRE].
H. Bouaziz, Y. Delenda and K. Khelifa-Kerfa, Azimuthal decorrelation between a jet and a Z boson at hadron colliders, JHEP 10 (2022) 006 [arXiv:2207.10147] [INSPIRE].
Y.-T. Chien, R. Rahn, D.Y. Shao, W.J. Waalewijn and B. Wu, Precision boson-jet azimuthal decorrelation at hadron colliders, arXiv:2205.05104 [INSPIRE].
A. Banfi, M. Dasgupta and Y. Delenda, Azimuthal decorrelations between QCD jets at all orders, Phys. Lett. B 665 (2008) 86 [arXiv:0804.3786] [INSPIRE].
C. Zhang, Q.-S. Dai and D.Y. Shao, Azimuthal decorrelation for photon induced dijet production in ultra-peripheral collisions of heavy ions, arXiv:2211.07071 [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
L.N. Lipatov, The parton model and perturbation theory, Yad. Fiz. 20 (1974) 181 [INSPIRE].
V.N. Gribov and L.N. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].
G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].
Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+e− Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2210.09272
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ju, WL., Schönherr, M. Projected transverse momentum resummation in top-antitop pair production at LHC. J. High Energ. Phys. 2023, 75 (2023). https://doi.org/10.1007/JHEP02(2023)075
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2023)075