Abstract
We explicitly show that general local higher-derivative theories with only complex conjugate ghosts and normal real particles are unitary at any perturbative order in the loop expansion. The proof presented here relies on integrating the loop energies on complex paths resulting from the deformation of the purely imaginary paths, when the external energies are continued from imaginary to real values. Contrary to the case of nonlocal theories, where the same integration path was first proposed, for the classes of theories studied here the same procedure is not analytic, but the resulting theory is unitary and unique when the complex ghosts are present in pairs. As an explicit application, a special class of higher-derivative super-renormalizable or finite gravitational and gauge theories turns out to be unitary at any perturbative order if we exclude the complex ghosts from the spectrum of the theory, as it is normally accepted for Becchi-Rouet-Stora-Tyutin (BRST) ghosts. Finally, we propose an analogy between confined gluons in quantum Yang-Mills theory and classical complex pairs in local higher-derivative theories. According to such interpretation, complex ghosts will not appear on shell as asymptotic states because confined in what is natural to name “ghostballs.”
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].
I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher-derivative quantum gravity, Phys. Lett. B 159 (1985) 269 [INSPIRE].
I.G. Avramidi, Asymptotic behavior of the quantum theory of gravity with higher derivatives, Sov. J. Nucl. Phys. 44 (1986) 255 [INSPIRE].
I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective Action in Quantum Gravity, CRC Press, Bristol, U.K. (1992) [ISBN: 9780750301220].
R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].
T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].
T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].
D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06 (2017) 066 [arXiv:1703.04584] [INSPIRE].
D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory, Phys. Rev. D 96 (2017) 045009 [arXiv:1703.05563] [INSPIRE].
D. Anselmi, Fakeons And Lee-Wick Models, JHEP 02 (2018) 141 [arXiv:1801.00915] [INSPIRE].
D. Anselmi, Fakeons, Microcausality And The Classical Limit Of Quantum Gravity, Class. Quant. Grav. 36 (2019) 065010 [arXiv:1809.05037] [INSPIRE].
D. Anselmi and A. Marino, Fakeons and microcausality: light cones, gravitational waves and the Hubble constant, Class. Quant. Grav. 37 (2020) 095003 [arXiv:1909.12873] [INSPIRE].
L. Modesto and I.L. Shapiro, Superrenormalizable quantum gravity with complex ghosts, Phys. Lett. B 755 (2016) 279 [arXiv:1512.07600] [INSPIRE].
L. Modesto, Super-renormalizable or finite Lee-Wick quantum gravity, Nucl. Phys. B 909 (2016) 584 [arXiv:1602.02421] [INSPIRE].
M. Asorey, J.L. López and I.L. Shapiro, Some remarks on high derivative quantum gravity, Int. J. Mod. Phys. A 12 (1997) 5711 [hep-th/9610006] [INSPIRE].
L. Modesto and G. Calcagni, Early universe in quantum gravity, arXiv:2206.06384 [INSPIRE].
G. Calcagni and L. Modesto, Testing quantum gravity with primordial gravitational waves, arXiv:2206.07066 [INSPIRE].
F. Briscese and L. Modesto, Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories, Phys. Rev. D 99 (2019) 104043 [arXiv:1803.08827] [INSPIRE].
F. Briscese and L. Modesto, Non-unitarity of Minkowskian non-local quantum field theories, Eur. Phys. J. C 81 (2021) 730 [arXiv:2103.00353] [INSPIRE].
N.V. Krasnikov, Nonlocal gauge theories, Theor. Math. Phys. 73 (1987) 1184 [Teor. Mat. Fiz. 73 (1987) 235].
Y.V. Kuzmin, The convergent nonlocal gravitation, Sov. J. Nucl. Phys. 50 (1989) 1011 [INSPIRE].
L. Modesto, Super-renormalizable Quantum Gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].
L. Modesto and L. Rachwał, Nonlocal quantum gravity: A review, Int. J. Mod. Phys. D 26 (2017) 1730020 [INSPIRE].
L. Modesto and L. Rachwał, Super-renormalizable and finite gravitational theories, Nucl. Phys. B 889 (2014) 228 [arXiv:1407.8036] [INSPIRE].
G. Calcagni and L. Modesto, Nonlocal quantum gravity and M-theory, Phys. Rev. D 91 (2015) 124059 [arXiv:1404.2137] [INSPIRE].
L. Modesto and L. Rachwał, Universally finite gravitational and gauge theories, Nucl. Phys. B 900 (2015) 147 [arXiv:1503.00261] [INSPIRE].
L. Modesto, M. Piva and L. Rachwał, Finite quantum gauge theories, Phys. Rev. D 94 (2016) 025021 [arXiv:1506.06227] [INSPIRE].
A. Accioly, A. Azeredo and H. Mukai, Propagator, tree-level unitarity and effective nonrelativistic potential for higher-derivative gravity theories in D dimensions, J. Math. Phys. 43 (2002) 473 [INSPIRE].
L. Rachwał, L. Modesto, A. Pinzul and I.L. Shapiro, Renormalization group in six-derivative quantum gravity, Phys. Rev. D 104 (2021) 085018 [arXiv:2104.13980] [INSPIRE].
D. Anselmi, Purely Virtual Particles in Quantum Gravity, Inflationary Cosmology and Collider Physics, Symmetry 14 (2022) 521 [arXiv:2203.02516] [INSPIRE].
D. Anselmi, Diagrammar of physical and fake particles and spectral optical theorem, JHEP 11 (2021) 030 [arXiv:2109.06889] [INSPIRE].
P.M. Lavrov and I.L. Shapiro, Gauge invariant renormalizability of quantum gravity, Phys. Rev. D 100 (2019) 026018 [arXiv:1902.04687] [INSPIRE].
E.T. Tomboulis, Superrenormalizable gauge and gravitational theories, UCLA-97-TEP-2 (1997) [hep-th/9702146] [INSPIRE].
S. Lanza, Renormalizability and Finiteness of Nonlocal Quantum Gravity, MSc Thesis, Università di Pisa, Italy (2016) [https://etd.adm.unipi.it/t/etd-06202016-152710].
H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [INSPIRE].
T. Sainapha, Gribov Ambiguity, Ph.D. Thesis, Chulalongkorn University (2019) [arXiv:1910.11659] [INSPIRE].
B. Holdom and J. Ren, QCD analogy for quantum gravity, Phys. Rev. D 93 (2016) 124030 [arXiv:1512.05305] [INSPIRE].
M. Frasca, A. Ghoshal and N. Okada, Confinement and renormalization group equations in string-inspired nonlocal gauge theories, Phys. Rev. D 104 (2021) 096010 [arXiv:2106.07629] [INSPIRE].
M. Frasca, A. Ghoshal and A.S. Koshelev, Confining the complex ghosts out, arXiv:2207.06394 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2208.13536
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Liu, J., Modesto, L. & Calcagni, G. Quantum field theory with ghost pairs. J. High Energ. Phys. 2023, 140 (2023). https://doi.org/10.1007/JHEP02(2023)140
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2023)140