Abstract
State-of-the-art analyses of W+c-jet production at the LHC require precise predictions. In the present work, we study in detail the impact of off-diagonal CKM elements up to next-to-next-to leading order in QCD, the influence of flavored jet algorithms, and the size of electroweak corrections. In addition, we also investigate phenomenological aspects related to the exact definition of the process. We find that all these effects can be of the order of several per cent for both the fiducial cross section and differential distributions. They are, therefore, very relevant for the interpretation of current and upcoming measurements.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
S. Catani, D. de Florian, G. Rodrigo and W. Vogelsang, Perturbative generation of a strange-quark asymmetry in the nucleon, Phys. Rev. Lett. 93 (2004) 152003 [hep-ph/0404240] [INSPIRE].
H.L. Lai, P.M. Nadolsky, J. Pumplin, D. Stump, W.K. Tung and C.P. Yuan, The Strange parton distribution of the nucleon: Global analysis and applications, JHEP 04 (2007) 089 [hep-ph/0702268] [INSPIRE].
F. Faura, S. Iranipour, E.R. Nocera, J. Rojo and M. Ubiali, The Strangest Proton?, Eur. Phys. J. C 80 (2020) 1168 [arXiv:2009.00014] [INSPIRE].
U. Baur, F. Halzen, S. Keller, M.L. Mangano and K. Riesselmann, The Charm content of W + 1 jet events as a probe of the strange quark distribution function, Phys. Lett. B 318 (1993) 544 [hep-ph/9308370] [INSPIRE].
ATLAS collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 05 (2014) 068 [arXiv:1402.6263] [INSPIRE].
CMS collaboration, Measurement of associated production of W bosons with charm quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the CMS experiment at the LHC, CMS-PAS-SMP-17-014 (2018) [INSPIRE].
CMS collaboration, Measurement of associated production of a W boson and a charm quark in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 269 [arXiv:1811.10021] [INSPIRE].
CMS collaboration, Measurement of the associated production of a W boson and a charm quark at \( \sqrt{s} \) = 8 TeV, CMS-PAS-SMP-18-013 (2019) [INSPIRE].
CMS collaboration, Measurements of the associated production of a W boson and a charm quark in proton–proton collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C 82 (2022) 1094 [arXiv:2112.00895] [INSPIRE].
CMS collaboration, Measurement of the production cross section of a W boson in association with a charm quark in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SMP-21-005 (2022) [INSPIRE].
M. Czakon, A. Mitov, M. Pellen and R. Poncelet, NNLO QCD predictions for W+c-jet production at the LHC, JHEP 06 (2021) 100 [arXiv:2011.01011] [INSPIRE].
W.T. Giele, S. Keller and E. Laenen, QCD corrections to W boson plus heavy quark production at the Tevatron, Phys. Lett. B 372 (1996) 141 [hep-ph/9511449] [INSPIRE].
W.J. Stirling and E. Vryonidou, Charm production in association with an electroweak gauge boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].
G. Bevilacqua, M.V. Garzelli, A. Kardos and L. Toth, W + charm production with massive c quarks in PowHel, JHEP 04 (2022) 056 [arXiv:2106.11261] [INSPIRE].
J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to large transverse momentum production of W bosons at the LHC, Phys. Lett. B 651 (2007) 160 [hep-ph/0703283] [INSPIRE].
J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta, Nucl. Phys. B 797 (2008) 27 [arXiv:0708.0476] [INSPIRE].
W. Hollik, T. Kasprzik and B.A. Kniehl, Electroweak corrections to W-boson hadroproduction at finite transverse momentum, Nucl. Phys. B 790 (2008) 138 [arXiv:0707.2553] [INSPIRE].
A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].
A. Behring, M. Czakon, A. Mitov, A.S. Papanastasiou and R. Poncelet, Higher order corrections to spin correlations in top quark pair production at the LHC, Phys. Rev. Lett. 123 (2019) 082001 [arXiv:1901.05407] [INSPIRE].
R. Gauld, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss and I. Majer, Associated production of a Higgs boson decaying into bottom quarks and a weak vector boson decaying leptonically at NNLO in QCD, JHEP 10 (2019) 002 [arXiv:1907.05836] [INSPIRE].
M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to leptonic observables in top-quark pair production and decay, JHEP 05 (2021) 212 [arXiv:2008.11133] [INSPIRE].
R. Gauld, A. Gehrmann-De Ridder, E.W.N. Glover, A. Huss and I. Majer, Predictions for Z-Boson Production in Association with a b-Jet at \( \mathcal{O}\left({\alpha}_s^3\right) \), Phys. Rev. Lett. 125 (2020) 222002 [arXiv:2005.03016] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Czakon, A. Mitov and R. Poncelet, Infrared-safe flavoured anti-kT jets, Cavendish-HEP-22/06 (2022), arXiv:2205.11879 [INSPIRE].
S. Caletti, A.J. Larkoski, S. Marzani and D. Reichelt, A fragmentation approach to jet flavor, JHEP 10 (2022) 158 [arXiv:2205.01117] [INSPIRE].
S. Caletti, A.J. Larkoski, S. Marzani and D. Reichelt, Practical jet flavour through NNLO, Eur. Phys. J. C 82 (2022) 632 [arXiv:2205.01109] [INSPIRE].
R. Gauld, A. Huss and G. Stagnitto, A dress of flavour to suit any jet, BONN-TH-2022-17 (2022), arXiv:2208.11138 [INSPIRE].
A. Denner, S. Dittmaier, M. Pellen and C. Schwan, Low-virtuality photon transitions \( {\gamma}^{\ast}\to f\overline{f} \) and the photon-to-jet conversion function, Phys. Lett. B 798 (2019) 134951 [arXiv:1907.02366] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
S. Carrazza, S. Forte, Z. Kassabov and J. Rojo, Specialized minimal PDFs for optimized LHC calculations, Eur. Phys. J. C 76 (2016) 205 [arXiv:1602.00005] [INSPIRE].
NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C 82 (2022) 428 [arXiv:2109.02653] [INSPIRE].
T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D 103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].
S. Bailey, T. Cridge, L.A. Harland-Lang, A.D. Martin and R.S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs, Eur. Phys. J. C 81 (2021) 341 [arXiv:2012.04684] [INSPIRE].
S. Alekhin, J. Blümlein and S. Moch, NLO PDFs from the ABMP16 fit, Eur. Phys. J. C 78 (2018) 477 [arXiv:1803.07537] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e+e− → WW → 4 fermions in double pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].
D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy Dependent Width Effects in e+e− Annihilation Near the Z Boson Pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e+e− → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [INSPIRE].
A. Denner and S. Dittmaier, The Complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. B Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [INSPIRE].
M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].
M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].
M. Czakon and D. Heymes, Four-dimensional formulation of the sector-improved residue subtraction scheme, Nucl. Phys. B 890 (2014) 152 [arXiv:1408.2500] [INSPIRE].
M. Czakon, A. van Hameren, A. Mitov and R. Poncelet, Single-jet inclusive rates with exact color at \( \mathcal{O}\left({\alpha}_s^4\right) \), JHEP 10 (2019) 262 [arXiv:1907.12911] [INSPIRE].
M. Pellen, R. Poncelet and A. Popescu, Polarised W+j production at the LHC: a study at NNLO QCD accuracy, JHEP 02 (2022) 160 [arXiv:2109.14336] [INSPIRE].
M. Pellen, R. Poncelet, A. Popescu and T. Vitos, Angular coefficients in W + j production at the LHC with high precision, Eur. Phys. J. C 82 (2022) 693 [arXiv:2204.12394] [INSPIRE].
H.B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, Next-to-next-to-leading order QCD corrections to \( Wb\overline{b} \) production at the LHC, Phys. Rev. D 106 (2022) 074016 [arXiv:2205.01687] [INSPIRE].
H.B. Hartanto, R. Poncelet, A. Popescu and S. Zoia, Flavour anti-kT algorithm applied to \( Wb\overline{b} \) production at the LHC, CAVENDISH-HEP-22/07 (2022), arXiv:2209.03280 [INSPIRE].
M. Bury and A. van Hameren, Numerical evaluation of multi-gluon amplitudes for High Energy Factorization, Comput. Phys. Commun. 196 (2015) 592 [arXiv:1503.08612] [INSPIRE].
F. Buccioni et al., OpenLoops 2, Eur. Phys. J. C 79 (2019) 866 [arXiv:1907.13071] [INSPIRE].
T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q}\to {W}^{\pm}\gamma \) and \( q\overline{q}\to {Z}^0\gamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].
C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1 [cs/0004015] [INSPIRE].
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].
S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].
B. Biedermann, A. Denner and M. Pellen, Large electroweak corrections to vector-boson scattering at the Large Hadron Collider, Phys. Rev. Lett. 118 (2017) 261801 [arXiv:1611.02951] [INSPIRE].
B. Biedermann, A. Denner and M. Pellen, Complete NLO corrections to W+W+ scattering and its irreducible background at the LHC, JHEP 10 (2017) 124 [arXiv:1708.00268] [INSPIRE].
A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen and C. Schwan, QCD and electroweak corrections to WZ scattering at the LHC, JHEP 06 (2019) 067 [arXiv:1904.00882] [INSPIRE].
S. Bräuer, A. Denner, M. Pellen, M. Schönherr and S. Schumann, Fixed-order and merged parton-shower predictions for WW and WWj production at the LHC including NLO QCD and EW corrections, JHEP 10 (2020) 159 [arXiv:2005.12128] [INSPIRE].
A. Denner, R. Franken, M. Pellen and T. Schmidt, NLO QCD and EW corrections to vector-boson scattering into ZZ at the LHC, JHEP 11 (2020) 110 [arXiv:2009.00411] [INSPIRE].
A. Denner, R. Franken, M. Pellen and T. Schmidt, Full NLO predictions for vector-boson scattering into Z bosons and its irreducible background at the LHC, JHEP 10 (2021) 228 [arXiv:2107.10688] [INSPIRE].
A. Denner, R. Franken, T. Schmidt and C. Schwan, NLO QCD and EW corrections to vector-boson scattering into W+W− at the LHC, JHEP 06 (2022) 098 [arXiv:2202.10844] [INSPIRE].
J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
PDF4LHC Working Group collaboration, The PDF4LHC21 combination of global PDF fits for the LHC Run III, J. Phys. G 49 (2022) 080501 [arXiv:2203.05506] [INSPIRE].
A. Denner and S. Dittmaier, Electroweak Radiative Corrections for Collider Physics, Phys. Rept. 864 (2020) 1 [arXiv:1912.06823] [INSPIRE].
A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, LU-TP 22-16 (2022), SciPost Phys. Codebases 8 (2022) [arXiv:2203.11601] [INSPIRE].
M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].
C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2212.00467
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Czakon, M., Mitov, A., Pellen, M. et al. A detailed investigation of W+c-jet at the LHC. J. High Energ. Phys. 2023, 241 (2023). https://doi.org/10.1007/JHEP02(2023)241
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2023)241