Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

q-deformation of the AdS5 × S5 superstring S-matrix and its relativistic limit

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A set of four factorizable non-relativistic S-matrices for a multiplet of fundamental particles are defined based on the R-matrix of the quantum group deformation of the centrally extended superalgebra \( \mathfrak{s}\mathfrak{u}\left( {2|2} \right) \). The S-matrices are a function of two independent couplings g and q = e /k. The main result is to find the scalar factor, or dressing phase, which ensures that the unitarity and crossing equations are satisfied. For generic (g, k), the S-matrices are branched functions on a product of rapidity tori. In the limit k → ∞, one of them is identified with the S-matrix describing the magnon excitations on the string world sheet in AdS5 × S 5, while another is the mirror S-matrix that is needed for the TBA. In the g → ∞ limit, the rapidity torus degenerates, the branch points disappear and the S-matrices become meromorphic functions, as required by relativistic S-matrix theory. However, it is only the mirror S-matrix which satisfies the correct relativistic crossing equation. The mirror S-matrix in the relativistic limit is then closely related to that of the semi-symmetric space sine-Gordon theory obtained from the string theory by the Pohlmeyer reduction, but has anti-symmetric rather than symmetric bound states. The interpolating S-matrix realizes at the quantum level the fact that at the classical level the two theories correspond to different limits of a one-parameter family of symplectic structures of the same integrable system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Beisert and P. Koroteev, Quantum deformations of the one-dimensional Hubbard model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. N. Beisert, The classical trigonometric r-matrix for the quantum-deformed Hubbard chain, J. Phys. A 44 (2011) 265202 [arXiv:1002.1097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. B. Hoare and A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. B. Hoare, T.J. Hollowood and J. Miramontes, A relativistic relative of the magnon S-matrix, JHEP 11 (2011) 048 [arXiv:1107.0628] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Mikhailov and S. Schäfer-Nameki, Sine-Gordon-like action for the superstring in AdS 5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. J. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. T.J. Hollowood and J. Miramontes, Magnons, their solitonic avatars and the Pohlmeyer reduction, JHEP 04 (2009) 060 [arXiv:0902.2405] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. T.J. Hollowood and J. Miramontes, A new and elementary CP n dyonic magnon, JHEP 08 (2009) 109 [arXiv:0905.2534] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Roiban and A.A. Tseytlin, UV finiteness of Pohlmeyer-reduced form of the AdS 5 × S 5 superstring theory, JHEP 04 (2009) 078 [arXiv:0902.2489] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. B. Hoare, Y. Iwashita and A.A. Tseytlin, Pohlmeyer-reduced form of string theory in AdS 5 × S 5 : semiclassical expansion, J. Phys. A 42 (2009) 375204 [arXiv:0906.3800] [INSPIRE].

    MathSciNet  Google Scholar 

  14. B. Hoare and A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory, JHEP 02 (2010) 094 [arXiv:0912.2958] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. Y. Iwashita, One-loop corrections to AdS 5 × S 5 superstring partition function via Pohlmeyer reduction, J. Phys. A 43 (2010) 345403 [arXiv:1005.4386] [INSPIRE].

    MathSciNet  Google Scholar 

  16. T.J. Hollowood and J. Miramontes, The relativistic avatars of giant magnons and their S-matrix, JHEP 10 (2010) 012 [arXiv:1006.3667] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. B. Hoare and A. Tseytlin, On the perturbative S-matrix of generalized sine-Gordon models, JHEP 11 (2010) 111 [arXiv:1008.4914] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. T.J. Hollowood and J. Miramontes, Classical and quantum solitons in the symmetric space sine-Gordon theories, JHEP 04 (2011) 119 [arXiv:1012.0716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D.M. Schmidtt, Supersymmetry flows, semi-symmetric space sine-Gordon models and the Pohlmeyer reduction, JHEP 03 (2011) 021 [arXiv:1012.4713] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. T.J. Hollowood and J. Miramontes, The semi-classical spectrum of solitons and giant magnons, JHEP 05 (2011) 062 [arXiv:1103.3148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Goykhman and E. Ivanov, Worldsheet supersymmetry of Pohlmeyer-reduced AdS n × S n superstrings, JHEP 09 (2011) 078 [arXiv:1104.0706] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. T.J. Hollowood and J. Miramontes, The AdS 5 × S 5 semi-symmetric space sine-Gordon theory, JHEP 05 (2011) 136 [arXiv:1104.2429] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D.M. Schmidtt, Integrability vs. supersymmetry: Poisson structures of the Pohlmeyer reduction, JHEP 11 (2011) 067 [arXiv:1106.4796] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. Y. Iwashita, R. Roiban and A. Tseytlin, Two-loop corrections to partition function of Pohlmeyer-reduced theory for AdS 5 × S 5 superstring, Phys. Rev. D 84 (2011) 126017 [arXiv:1109.5361] [INSPIRE].

    ADS  Google Scholar 

  25. G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Beisert and A.A. Tseytlin, On quantum corrections to spinning strings and Bethe equations, Phys. Lett. B 629 (2005) 102 [hep-th/0509084] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. R. Hernandez and E. Lopez, Quantum corrections to the string Bethe ansatz, JHEP 07 (2006) 004 [hep-th/0603204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Arutyunov and S. Frolov, On AdS 5 × S 5 string S-matrix, Phys. Lett. B 639 (2006) 378 [hep-th/0604043] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. L. Freyhult and C. Kristjansen, A universality test of the quantum string Bethe ansatz, Phys. Lett. B 638 (2006) 258 [hep-th/0604069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. N. Beisert, The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry, J. Stat. Mech. (2007) P01017 [nlin/0610017] [INSPIRE].

  34. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [INSPIRE].

  35. G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. I. Kostov, D. Serban and D. Volin, Strong coupling limit of Bethe ansatz equations, Nucl. Phys. B 789 (2008) 413 [hep-th/0703031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. N. Dorey, D.M. Hofman and J.M. Maldacena, On the singularities of the magnon S-matrix, Phys. Rev. D 76 (2007) 025011 [hep-th/0703104] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. N. Gromov and P. Vieira, Constructing the AdS/CFT dressing factor, Nucl. Phys. B 790 (2008) 72 [hep-th/0703266] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. G. Arutyunov and S. Frolov, The dressing factor and crossing equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. D. Volin, Minimal solution of the AdS/CFT crossing equation, J. Phys. A 42 (2009) 372001 [arXiv:0904.4929] [INSPIRE].

    MathSciNet  Google Scholar 

  41. M. Kruczenski and A. Tirziu, On the dressing phase in the SL(2) Bethe ansatz, Phys. Rev. D 80 (2009) 086002 [arXiv:0907.4118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. P. Vieira and D. Volin, Review of AdS/CFT integrability, chapter III.3: the dressing factor, Lett. Math. Phys. 99 (2012) 231 [arXiv:1012.3992] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].

    MathSciNet  Google Scholar 

  46. N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. G. Arutyunov and S. Frolov, Simplified TBA equations of the AdS 5 × S 5 mirror model, JHEP 11 (2009) 019 [arXiv:0907.2647] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. Z. Bajnok, Review of AdS/CFT integrability, chapter III.6: thermodynamic Bethe ansatz, Lett. Math. Phys. 99 (2012) 299 [arXiv:1012.3995] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. M. de Leeuw, T. Matsumoto and V. Regelskis, The bound state S-matrix of the deformed Hubbard chain, arXiv:1109.1410 [INSPIRE].

  50. N. Beisert, W. Galleas and T. Matsumoto, A quantum affine algebra for the deformed Hubbard chain, arXiv:1102.5700 [INSPIRE].

  51. J. Miramontes, Hermitian analyticity versus real analyticity in two-dimensional factorized S matrix theories, Phys. Lett. B 455 (1999) 231 [hep-th/9901145] [INSPIRE].

    ADS  Google Scholar 

  52. P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE].

  53. N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].

    MathSciNet  Google Scholar 

  54. N. Beisert, On the scattering phase for AdS 5 × S 5 strings, Mod. Phys. Lett. A 22 (2007) 415 [hep-th/0606214] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. part I, J. Phys. A A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Hollowood.

Additional information

ArXiv ePrint: 1112.4485

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoare, B., Hollowood, T.J. & Miramontes, J.L. q-deformation of the AdS5 × S5 superstring S-matrix and its relativistic limit. J. High Energ. Phys. 2012, 15 (2012). https://doi.org/10.1007/JHEP03(2012)015

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)015

Keywords