Abstract
A set of four factorizable non-relativistic S-matrices for a multiplet of fundamental particles are defined based on the R-matrix of the quantum group deformation of the centrally extended superalgebra \( \mathfrak{s}\mathfrak{u}\left( {2|2} \right) \). The S-matrices are a function of two independent couplings g and q = e iπ/k. The main result is to find the scalar factor, or dressing phase, which ensures that the unitarity and crossing equations are satisfied. For generic (g, k), the S-matrices are branched functions on a product of rapidity tori. In the limit k → ∞, one of them is identified with the S-matrix describing the magnon excitations on the string world sheet in AdS5 × S 5, while another is the mirror S-matrix that is needed for the TBA. In the g → ∞ limit, the rapidity torus degenerates, the branch points disappear and the S-matrices become meromorphic functions, as required by relativistic S-matrix theory. However, it is only the mirror S-matrix which satisfies the correct relativistic crossing equation. The mirror S-matrix in the relativistic limit is then closely related to that of the semi-symmetric space sine-Gordon theory obtained from the string theory by the Pohlmeyer reduction, but has anti-symmetric rather than symmetric bound states. The interpolating S-matrix realizes at the quantum level the fact that at the classical level the two theories correspond to different limits of a one-parameter family of symplectic structures of the same integrable system.
Similar content being viewed by others
References
N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
N. Beisert and P. Koroteev, Quantum deformations of the one-dimensional Hubbard model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [INSPIRE].
N. Beisert, The classical trigonometric r-matrix for the quantum-deformed Hubbard chain, J. Phys. A 44 (2011) 265202 [arXiv:1002.1097] [INSPIRE].
B. Hoare and A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].
B. Hoare, T.J. Hollowood and J. Miramontes, A relativistic relative of the magnon S-matrix, JHEP 11 (2011) 048 [arXiv:1107.0628] [INSPIRE].
M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [INSPIRE].
A. Mikhailov and S. Schäfer-Nameki, Sine-Gordon-like action for the superstring in AdS 5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [INSPIRE].
M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [INSPIRE].
J. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [INSPIRE].
T.J. Hollowood and J. Miramontes, Magnons, their solitonic avatars and the Pohlmeyer reduction, JHEP 04 (2009) 060 [arXiv:0902.2405] [INSPIRE].
T.J. Hollowood and J. Miramontes, A new and elementary CP n dyonic magnon, JHEP 08 (2009) 109 [arXiv:0905.2534] [INSPIRE].
R. Roiban and A.A. Tseytlin, UV finiteness of Pohlmeyer-reduced form of the AdS 5 × S 5 superstring theory, JHEP 04 (2009) 078 [arXiv:0902.2489] [INSPIRE].
B. Hoare, Y. Iwashita and A.A. Tseytlin, Pohlmeyer-reduced form of string theory in AdS 5 × S 5 : semiclassical expansion, J. Phys. A 42 (2009) 375204 [arXiv:0906.3800] [INSPIRE].
B. Hoare and A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory, JHEP 02 (2010) 094 [arXiv:0912.2958] [INSPIRE].
Y. Iwashita, One-loop corrections to AdS 5 × S 5 superstring partition function via Pohlmeyer reduction, J. Phys. A 43 (2010) 345403 [arXiv:1005.4386] [INSPIRE].
T.J. Hollowood and J. Miramontes, The relativistic avatars of giant magnons and their S-matrix, JHEP 10 (2010) 012 [arXiv:1006.3667] [INSPIRE].
B. Hoare and A. Tseytlin, On the perturbative S-matrix of generalized sine-Gordon models, JHEP 11 (2010) 111 [arXiv:1008.4914] [INSPIRE].
T.J. Hollowood and J. Miramontes, Classical and quantum solitons in the symmetric space sine-Gordon theories, JHEP 04 (2011) 119 [arXiv:1012.0716] [INSPIRE].
D.M. Schmidtt, Supersymmetry flows, semi-symmetric space sine-Gordon models and the Pohlmeyer reduction, JHEP 03 (2011) 021 [arXiv:1012.4713] [INSPIRE].
T.J. Hollowood and J. Miramontes, The semi-classical spectrum of solitons and giant magnons, JHEP 05 (2011) 062 [arXiv:1103.3148] [INSPIRE].
M. Goykhman and E. Ivanov, Worldsheet supersymmetry of Pohlmeyer-reduced AdS n × S n superstrings, JHEP 09 (2011) 078 [arXiv:1104.0706] [INSPIRE].
T.J. Hollowood and J. Miramontes, The AdS 5 × S 5 semi-symmetric space sine-Gordon theory, JHEP 05 (2011) 136 [arXiv:1104.2429] [INSPIRE].
D.M. Schmidtt, Integrability vs. supersymmetry: Poisson structures of the Pohlmeyer reduction, JHEP 11 (2011) 067 [arXiv:1106.4796] [INSPIRE].
Y. Iwashita, R. Roiban and A. Tseytlin, Two-loop corrections to partition function of Pohlmeyer-reduced theory for AdS 5 × S 5 superstring, Phys. Rev. D 84 (2011) 126017 [arXiv:1109.5361] [INSPIRE].
G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [INSPIRE].
N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe ansätze for gauge theory and strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].
N. Beisert and A.A. Tseytlin, On quantum corrections to spinning strings and Bethe equations, Phys. Lett. B 629 (2005) 102 [hep-th/0509084] [INSPIRE].
R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [INSPIRE].
R. Hernandez and E. Lopez, Quantum corrections to the string Bethe ansatz, JHEP 07 (2006) 004 [hep-th/0603204] [INSPIRE].
G. Arutyunov and S. Frolov, On AdS 5 × S 5 string S-matrix, Phys. Lett. B 639 (2006) 378 [hep-th/0604043] [INSPIRE].
L. Freyhult and C. Kristjansen, A universality test of the quantum string Bethe ansatz, Phys. Lett. B 638 (2006) 258 [hep-th/0604069] [INSPIRE].
N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [INSPIRE].
N. Beisert, The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry, J. Stat. Mech. (2007) P01017 [nlin/0610017] [INSPIRE].
N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [INSPIRE].
G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [INSPIRE].
I. Kostov, D. Serban and D. Volin, Strong coupling limit of Bethe ansatz equations, Nucl. Phys. B 789 (2008) 413 [hep-th/0703031] [INSPIRE].
N. Dorey, D.M. Hofman and J.M. Maldacena, On the singularities of the magnon S-matrix, Phys. Rev. D 76 (2007) 025011 [hep-th/0703104] [INSPIRE].
N. Gromov and P. Vieira, Constructing the AdS/CFT dressing factor, Nucl. Phys. B 790 (2008) 72 [hep-th/0703266] [INSPIRE].
G. Arutyunov and S. Frolov, The dressing factor and crossing equations, J. Phys. A 42 (2009) 425401 [arXiv:0904.4575] [INSPIRE].
D. Volin, Minimal solution of the AdS/CFT crossing equation, J. Phys. A 42 (2009) 372001 [arXiv:0904.4929] [INSPIRE].
M. Kruczenski and A. Tirziu, On the dressing phase in the SL(2) Bethe ansatz, Phys. Rev. D 80 (2009) 086002 [arXiv:0907.4118] [INSPIRE].
P. Vieira and D. Volin, Review of AdS/CFT integrability, chapter III.3: the dressing factor, Lett. Math. Phys. 99 (2012) 231 [arXiv:1012.3992] [INSPIRE].
G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].
G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].
D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].
N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].
G. Arutyunov and S. Frolov, Simplified TBA equations of the AdS 5 × S 5 mirror model, JHEP 11 (2009) 019 [arXiv:0907.2647] [INSPIRE].
Z. Bajnok, Review of AdS/CFT integrability, chapter III.6: thermodynamic Bethe ansatz, Lett. Math. Phys. 99 (2012) 299 [arXiv:1012.3995] [INSPIRE].
M. de Leeuw, T. Matsumoto and V. Regelskis, The bound state S-matrix of the deformed Hubbard chain, arXiv:1109.1410 [INSPIRE].
N. Beisert, W. Galleas and T. Matsumoto, A quantum affine algebra for the deformed Hubbard chain, arXiv:1102.5700 [INSPIRE].
J. Miramontes, Hermitian analyticity versus real analyticity in two-dimensional factorized S matrix theories, Phys. Lett. B 455 (1999) 231 [hep-th/9901145] [INSPIRE].
P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE].
N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].
N. Beisert, On the scattering phase for AdS 5 × S 5 strings, Mod. Phys. Lett. A 22 (2007) 415 [hep-th/0606214] [INSPIRE].
G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. part I, J. Phys. A A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1112.4485
Rights and permissions
About this article
Cite this article
Hoare, B., Hollowood, T.J. & Miramontes, J.L. q-deformation of the AdS5 × S5 superstring S-matrix and its relativistic limit. J. High Energ. Phys. 2012, 15 (2012). https://doi.org/10.1007/JHEP03(2012)015
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2012)015