Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Pauli exclusion principle at strong coupling: holographic matter and momentum space

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

For free fermions at finite density, the Pauli exclusion principle is responsible for the existence of a Fermi surface and the consequent presence of low energy spectral weight over a finite range of momenta. We investigate the extent to which this effect occurs in strongly interacting quantum matter with a holographic dual. We obtain the low energy current-current spectral weight in two holographic frameworks at finite density: systems exhibiting semi-local quantum criticality (with a low temperature entropy density vanishing like sT η ), and a probe D3/D5 system. For the semi-local theory with 0 < η < 2 we find a sharp discontinuity in the transverse spectral weight at a nonzero momentum k . The case η=1 is found to have additional symmetries and is soluble even at nonzero temperature. We show that this case exhibits a robust linear in temperature resistivity in the presence of random charged impurities. For the probe D3/D5 system we find an analytic expression for the low energy spectral weight as a function of momentum. The spectral weight is supported below a specific momentum k and is exponentially suppressed at higher momenta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Polchinski, Effective field theory and the Fermi surface, in Proceedings ofRecent directions in particle theory”, Boulder U.S.A. (1992), pg. 235 [hep-th/9210046] [INSPIRE].

  2. R. Shankar, Renormalization group approach to interacting fermions, Rev. Mod. Phys. 66 (1994)129 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Luttinger and J.C. Ward, Ground state energy of a many fermion system. 2, Phys. Rev. 118 (1960)1417 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. J. Luttinger, Fermi surface and some simple equilibrium properties of a system of interacting fermions, Phys. Rev. 119 (1960) 1153 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. M. Oshikawa, Topological approach to Luttingers theorem and the Fermi surface of a Kondo lattice, Phys. Rev. Lett. 84 (2000) 3370 [cond-mat/0002392].

    Article  ADS  Google Scholar 

  6. M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Gioev and I. Klich, Entanglement entropy of Fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

    Article  MathSciNet  ADS  Google Scholar 

  8. B. Swingle, Entanglement entropy and the Fermi surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. B. Swingle, Conformal Field Theory on the Fermi surface, Phys. Rev. B 86 (2012) 035116 [arXiv:1002.4635] [INSPIRE].

    ADS  Google Scholar 

  10. N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  12. S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. L. Onsager, Interpretation of the de Haas-van Alphen effect, Phil. Mag. 43 (1952) 1006.

    Google Scholar 

  14. S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.L. Fetter and J.D. Walecka, Quantum theory of many-particle systems, Dover, U.S.A. (1971).

    Google Scholar 

  16. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].

  18. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008)106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010)058 [arXiv:1005.4075] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].

    Article  ADS  Google Scholar 

  23. N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].

  24. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  25. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].

    Article  ADS  Google Scholar 

  28. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S.S. Gubser and J. Ren, Analytic fermionic Greens functions from holography, Phys. Rev. D 86 (2012)046004 [arXiv:1204.6315] [INSPIRE].

    ADS  Google Scholar 

  30. A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D 86 (2012) 124046 [arXiv:1208.4102] [INSPIRE].

    ADS  Google Scholar 

  31. S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  34. D. Anninos, S.A. Hartnoll and D.M. Hofman, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav. 29 (2012) 075002 [arXiv:1109.4942] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007)144502 [arXiv:0706.3215] [INSPIRE].

    ADS  Google Scholar 

  38. S. Sachdev and B. Keimer, Quantum criticality, Phys. Today 64N2 (2011) 29 [arXiv:1102.4628] [INSPIRE].

    Article  Google Scholar 

  39. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFTs on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Karch, D. Son and A. Starinets, Holographic quantum liquid, Phys. Rev. Lett. 102 (2009) 051602 [INSPIRE].

    Article  ADS  Google Scholar 

  45. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Polchinski and E. Silverstein, Large-density field theory, viscosity and ‘2k F singularities from string duals, Class. Quant. Grav. 29 (2012) 194008 [arXiv:1203.1015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids, arXiv:1207.4208 [INSPIRE].

  48. S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010)151602 [arXiv:1006.3794] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean A. Hartnoll.

Additional information

ArXiv ePrint: 1210.1590

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anantua, R.J., Hartnoll, S.A., Martin, V.L. et al. The Pauli exclusion principle at strong coupling: holographic matter and momentum space. J. High Energ. Phys. 2013, 104 (2013). https://doi.org/10.1007/JHEP03(2013)104

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2013)104

Keywords