Abstract
For free fermions at finite density, the Pauli exclusion principle is responsible for the existence of a Fermi surface and the consequent presence of low energy spectral weight over a finite range of momenta. We investigate the extent to which this effect occurs in strongly interacting quantum matter with a holographic dual. We obtain the low energy current-current spectral weight in two holographic frameworks at finite density: systems exhibiting semi-local quantum criticality (with a low temperature entropy density vanishing like s ∼ T η ), and a probe D3/D5 system. For the semi-local theory with 0 < η < 2 we find a sharp discontinuity in the transverse spectral weight at a nonzero momentum k ⋆. The case η=1 is found to have additional symmetries and is soluble even at nonzero temperature. We show that this case exhibits a robust linear in temperature resistivity in the presence of random charged impurities. For the probe D3/D5 system we find an analytic expression for the low energy spectral weight as a function of momentum. The spectral weight is supported below a specific momentum k ⋆ and is exponentially suppressed at higher momenta.
Similar content being viewed by others
References
J. Polchinski, Effective field theory and the Fermi surface, in Proceedings of “Recent directions in particle theory”, Boulder U.S.A. (1992), pg. 235 [hep-th/9210046] [INSPIRE].
R. Shankar, Renormalization group approach to interacting fermions, Rev. Mod. Phys. 66 (1994)129 [INSPIRE].
J. Luttinger and J.C. Ward, Ground state energy of a many fermion system. 2, Phys. Rev. 118 (1960)1417 [INSPIRE].
J. Luttinger, Fermi surface and some simple equilibrium properties of a system of interacting fermions, Phys. Rev. 119 (1960) 1153 [INSPIRE].
M. Oshikawa, Topological approach to Luttinger’s theorem and the Fermi surface of a Kondo lattice, Phys. Rev. Lett. 84 (2000) 3370 [cond-mat/0002392].
M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].
D. Gioev and I. Klich, Entanglement entropy of Fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].
B. Swingle, Entanglement entropy and the Fermi surface, Phys. Rev. Lett. 105 (2010) 050502 [arXiv:0908.1724] [INSPIRE].
B. Swingle, Conformal Field Theory on the Fermi surface, Phys. Rev. B 86 (2012) 035116 [arXiv:1002.4635] [INSPIRE].
N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].
L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].
S.A. Hartnoll and E. Shaghoulian, Spectral weight in holographic scaling geometries, JHEP 07 (2012) 078 [arXiv:1203.4236] [INSPIRE].
L. Onsager, Interpretation of the de Haas-van Alphen effect, Phil. Mag. 43 (1952) 1006.
S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from Umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].
A.L. Fetter and J.D. Walecka, Quantum theory of many-particle systems, Dover, U.S.A. (1971).
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008)106005 [arXiv:0808.1725] [INSPIRE].
C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].
M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [INSPIRE].
M. Edalati, J.I. Jottar and R.G. Leigh, Holography and the sound of criticality, JHEP 10 (2010)058 [arXiv:1005.4075] [INSPIRE].
N. Iqbal, H. Liu and M. Mezei, Semi-local quantum liquids, JHEP 04 (2012) 086 [arXiv:1105.4621] [INSPIRE].
N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].
S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [INSPIRE].
N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].
B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].
S.S. Gubser and J. Ren, Analytic fermionic Green’s functions from holography, Phys. Rev. D 86 (2012)046004 [arXiv:1204.6315] [INSPIRE].
A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, Phys. Rev. D 86 (2012) 124046 [arXiv:1208.4102] [INSPIRE].
S.A. Hartnoll and L. Huijse, Fractionalization of holographic Fermi surfaces, Class. Quant. Grav. 29 (2012) 194001 [arXiv:1111.2606] [INSPIRE].
M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
D. Anninos, S.A. Hartnoll and D.M. Hofman, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav. 29 (2012) 075002 [arXiv:1109.4942] [INSPIRE].
V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [INSPIRE].
S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].
S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007)144502 [arXiv:0706.3215] [INSPIRE].
S. Sachdev and B. Keimer, Quantum criticality, Phys. Today 64N2 (2011) 29 [arXiv:1102.4628] [INSPIRE].
A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [INSPIRE].
O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].
J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].
M. Goykhman, A. Parnachev and J. Zaanen, Fluctuations in finite density holographic quantum liquids, JHEP 10 (2012) 045 [arXiv:1204.6232] [INSPIRE].
A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [INSPIRE].
A. Karch, D. Son and A. Starinets, Holographic quantum liquid, Phys. Rev. Lett. 102 (2009) 051602 [INSPIRE].
D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].
J. Polchinski and E. Silverstein, Large-density field theory, viscosity and ‘2k F ’ singularities from string duals, Class. Quant. Grav. 29 (2012) 194008 [arXiv:1203.1015] [INSPIRE].
T. Faulkner and N. Iqbal, Friedel oscillations and horizon charge in 1D holographic liquids, arXiv:1207.4208 [INSPIRE].
S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010)151602 [arXiv:1006.3794] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1210.1590
Rights and permissions
About this article
Cite this article
Anantua, R.J., Hartnoll, S.A., Martin, V.L. et al. The Pauli exclusion principle at strong coupling: holographic matter and momentum space. J. High Energ. Phys. 2013, 104 (2013). https://doi.org/10.1007/JHEP03(2013)104
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2013)104