Abstract
We systematically analyze the d = 5 Weinberg operator at 2-loop order. Using a diagrammatic approach, we identify two different interesting categories of neutrino mass models: (i) Genuine 2-loop models for which both, tree-level and 1-loop contributions, are guaranteed to be absent. And (ii) finite 2-loop diagrams, which correspond to the 1-loop generation of some particular vertex appearing in a given 1-loop neutrino mass model, thus being effectively 2-loop. From the large list of all possible 2-loop diagrams, the vast majority are infinite corrections to lower order neutrino mass models and only a moderately small number of diagrams fall into these two interesting classes. Moreover, all diagrams in class (i) are just variations of three basic diagrams, with examples discussed in the literature before. Similarly, we also show that class (ii) diagrams consists of only variations of these three plus two more basic diagrams. Finally, we show how our results can be consistently and readily used in order to construct two-loop neutrino mass models.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].
KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].
F. Capozzi et al., Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].
M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].
S. Weinberg, Varieties of baryon and lepton nonconservation, Phys. Rev. D 22 (1980) 1694 [INSPIRE].
E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].
P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].
R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].
R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
L. Wolfenstein, A theoretical pattern for neutrino oscillations, Nucl. Phys. B 175 (1980) 93 [INSPIRE].
K.R.S. Balaji, W. Grimus and T. Schwetz, The solar LMA neutrino oscillation solution in the Zee model, Phys. Lett. B 508 (2001) 301 [hep-ph/0104035] [INSPIRE].
X.-G. He, Is the Zee model neutrino mass matrix ruled out?, Eur. Phys. J. C 34 (2004) 371 [hep-ph/0307172] [INSPIRE].
D. Aristizabal Sierra and D. Restrepo, Leptonic charged Higgs decays in the Zee model, JHEP 08 (2006) 036 [hep-ph/0604012] [INSPIRE].
A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].
K.S. Babu, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].
D. Choudhury, R. Gandhi, J.A. Gracey and B. Mukhopadhyaya, Two loop neutrino masses and the solar neutrino problem, Phys. Rev. D 50 (1994) 3468 [hep-ph/9401329] [INSPIRE].
T. Kitabayashi and M. Yasue, Neutrino oscillations induced by two loop radiative mechanism, Phys. Lett. B 490 (2000) 236 [hep-ph/0006014] [INSPIRE].
K.S. Babu and C. Macesanu, Neutrino masses and mixings in a minimal SO(10) model, Phys. Rev. D 72 (2005) 115003 [hep-ph/0505200] [INSPIRE].
D. Aristizabal Sierra and M. Hirsch, Experimental tests for the Babu-Zee two-loop model of Majorana neutrino masses, JHEP 12 (2006) 052 [hep-ph/0609307] [INSPIRE].
M. Nebot, J.F. Oliver, D. Palao and A. Santamaria, Prospects for the Zee-Babu model at the CERN LHC and low energy experiments, Phys. Rev. D 77 (2008) 093013 [arXiv:0711.0483] [INSPIRE].
D. Schmidt, T. Schwetz and H. Zhang, Status of the Zee-Babu model for neutrino mass and possible tests at a like-sign linear collider, Nucl. Phys. B 885 (2014) 524 [arXiv:1402.2251] [INSPIRE].
J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, The Zee-Babu model revisited in the light of new data, Nucl. Phys. B 885 (2014) 542 [arXiv:1402.4491] [INSPIRE].
K.S. Babu and S. Nandi, Natural fermion mass hierarchy and new signals for the Higgs boson, Phys. Rev. D 62 (2000) 033002 [hep-ph/9907213] [INSPIRE].
F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].
K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].
F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
S.T. Petcov and S.T. Toshev, Conservation of lepton charges, massive Majorana and massless neutrinos, Phys. Lett. B 143 (1984) 175 [INSPIRE].
K.S. Babu and E. Ma, Natural hierarchy of radiatively induced Majorana neutrino masses, Phys. Rev. Lett. 61 (1988) 674 [INSPIRE].
E. Ma and J. Wudka, Vector-boson-induced neutrino mass, Phys. Lett. B 712 (2012) 391 [arXiv:1202.3098] [INSPIRE].
K. Bamba, C.Q. Geng and S.H. Ho, Radiative neutrino mass generation and dark energy, JCAP 09 (2008) 001 [arXiv:0806.0952] [INSPIRE].
M. Lindner, D. Schmidt and T. Schwetz, Dark matter and neutrino masses from global U(1) B−L symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].
M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, An R-parity conserving radiative neutrino mass model without right-handed neutrinos, JHEP 07 (2010) 084 [Erratum ibid. 11 (2010) 049] [arXiv:1005.5159] [INSPIRE].
M. Kohda, H. Sugiyama and K. Tsumura, Lepton number violation at the LHC with leptoquark and diquark, Phys. Lett. B 718 (2013) 1436 [arXiv:1210.5622] [INSPIRE].
E. Ma, Z 3 dark matter and two-loop neutrino mass, Phys. Lett. B 662 (2008) 49 [arXiv:0708.3371] [INSPIRE].
F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, A realistic model of neutrino masses with a large neutrinoless double beta decay rate, JHEP 05 (2012) 133 [arXiv:1111.6960] [INSPIRE].
G. Guo, X.-G. He and G.-N. Li, Radiative two loop inverse seesaw and dark matter, JHEP 10 (2012) 044 [arXiv:1207.6308] [INSPIRE].
G.-N. Li, G. Guo, B. Ren, Y.-J. Zheng and X.-G. He, Lepton number violation and h → γγ in a radiative inverse seesaw dark matter model, JHEP 04 (2013) 026 [arXiv:1212.5528] [INSPIRE].
D. Chang and H.N. Long, Interesting radiative patterns of neutrino mass in an SU(3) C × SU(3) L × U(1) X model with right-handed neutrinos, Phys. Rev. D 73 (2006) 053006 [hep-ph/0603098] [INSPIRE].
M. Aoki and T. Toma, Impact of semi-annihilation of Z 3 symmetric dark matter with radiative neutrino masses, JCAP 09 (2014) 016 [arXiv:1405.5870] [INSPIRE].
H. Okada, T. Toma and K. Yagyu, Inert extension of the Zee-Babu model, Phys. Rev. D 90 (2014) 095005 [arXiv:1408.0961] [INSPIRE].
C.-S. Chen, C.Q. Geng and J.N. Ng, Unconventional neutrino mass generation, neutrinoless double beta decays and collider phenomenology, Phys. Rev. D 75 (2007) 053004 [hep-ph/0610118] [INSPIRE].
C.-S. Chen, C.-Q. Geng, J.N. Ng and J.M.S. Wu, Testing radiative neutrino mass generation at the LHC, JHEP 08 (2007) 022 [arXiv:0706.1964] [INSPIRE].
S.F. King, A. Merle and L. Panizzi, Effective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC, JHEP 11 (2014) 124 [arXiv:1406.4137] [INSPIRE].
M. Gustafsson, J.M. No and M.A. Rivera, Radiative neutrino mass generation linked to neutrino mixing and 0νββ-decay predictions, Phys. Rev. D 90 (2014) 013012 [arXiv:1402.0515] [INSPIRE].
M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [arXiv:1212.4806] [INSPIRE].
P.W. Angel, Y. Cai, N.L. Rodd, M.A. Schmidt and R.R. Volkas, Testable two-loop radiative neutrino mass model based on an LLQd c Qd c effective operator, JHEP 10 (2013) 118 [Erratum ibid. 11 (2014) 092] [arXiv:1308.0463] [INSPIRE].
F. Borzumati and J.S. Lee, Novel constraints on ΔL = 1 interactions from neutrino masses, Phys. Rev. D 66 (2002) 115012 [hep-ph/0207184] [INSPIRE].
P. Dey, A. Kundu, B. Mukhopadhyaya and S. Nandi, Two-loop neutrino masses with large R-parity violating interactions in supersymmetry, JHEP 12 (2008) 100 [arXiv:0808.1523] [INSPIRE].
K.S. Babu and J. Julio, Two-loop neutrino mass generation through leptoquarks, Nucl. Phys. B 841 (2010) 130 [arXiv:1006.1092] [INSPIRE].
K.S. Babu and J. Julio, Radiative neutrino mass generation through vector-like quarks, Phys. Rev. D 85 (2012) 073005 [arXiv:1112.5452] [INSPIRE].
Y. Kajiyama, H. Okada and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 (2013) 015029 [arXiv:1303.7356] [INSPIRE].
S. Baek, H. Okada and T. Toma, Two loop neutrino model and dark matter particles with global B-L symmetry, JCAP 06 (2014) 027 [arXiv:1312.3761] [INSPIRE].
E. Ma and U. Sarkar, Revelations of the E 6 /UN(1) model: two-loop neutrino mass and dark matter, Phys. Lett. B 653 (2007) 288 [arXiv:0705.0074] [INSPIRE].
M. Aoki, J. Kubo and H. Takano, Two-loop radiative seesaw mechanism with multicomponent dark matter explaining the possible γ excess in the Higgs boson decay and at the Fermi LAT, Phys. Rev. D 87 (2013) 116001 [arXiv:1302.3936] [INSPIRE].
W. Grimus and L. Lavoura, A neutrino mass matrix with seesaw mechanism and two loop mass splitting, Phys. Rev. D 62 (2000) 093012 [hep-ph/0007011] [INSPIRE].
S. Davidson, G. Isidori and A. Strumia, The smallest neutrino mass, Phys. Lett. B 646 (2007) 100 [hep-ph/0611389] [INSPIRE].
A.S. Joshipura and S.D. Rindani, Neutrino anomalies in an extended Zee model, Phys. Lett. B 464 (1999) 239 [hep-ph/9907390] [INSPIRE].
D. Chang and A. Zee, Radiatively induced neutrino Majorana masses and oscillation, Phys. Rev. D 61 (2000) 071303 [hep-ph/9912380] [INSPIRE].
T. Kitabayashi, Two loop radiative corrections to neutrino masses in SU(3) L × U(1) N gauge models, hep-ph/0010341 [INSPIRE].
T. Kitabayashi, Comment on neutrino masses and oscillations in an SU(3) L × U(1) N model with radiative mechanism, Phys. Rev. D 64 (2001) 057301 [hep-ph/0103195] [INSPIRE].
T. Kitabayashi and M. Yasue, Large mixing angle MSW solution in an SU(3) L × U(1) N gauge model with two loop radiative mechanism, Phys. Lett. B 508 (2001) 85 [hep-ph/0102228] [INSPIRE].
T. Kitabayashi and M. Yasue, Radiatively induced neutrino masses and oscillations in an SU(3) L × U(1) N gauge model, Phys. Rev. D 63 (2001) 095002 [hep-ph/0010087] [INSPIRE].
Y. Kajiyama, H. Okada and K. Yagyu, Two loop radiative seesaw model with inert triplet scalar field, Nucl. Phys. B 874 (2013) 198 [arXiv:1303.3463] [INSPIRE].
H. Okada, Two loop induced Dirac neutrino model and dark matters with global U(1)′ symmetry, arXiv:1404.0280 [INSPIRE].
Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and ingredients for neutrino mass at loop level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].
K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
K.-W. Choi, K.S. Jeong and W.Y. Song, Operator analysis of neutrinoless double beta decay, Phys. Rev. D 66 (2002) 093007 [hep-ph/0207180] [INSPIRE].
A. de Gouvêa and J. Jenkins, A survey of lepton number violation via effective operators, Phys. Rev. D 77 (2008) 013008 [arXiv:0708.1344] [INSPIRE].
P.W. Angel, N.L. Rodd and R.R. Volkas, Origin of neutrino masses at the LHC: ΔL = 2 effective operators and their ultraviolet completions, Phys. Rev. D 87 (2013) 073007 [arXiv:1212.6111] [INSPIRE].
F. del Aguila, A. Aparici, S. Bhattacharya, A. Santamaria and J. Wudka, Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses, JHEP 06 (2012) 146 [arXiv:1204.5986] [INSPIRE].
J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
D. Aristizabal Sierra, M. Hirsch and S.G. Kovalenko, Leptoquarks: neutrino masses and accelerator phenomenology, Phys. Rev. D 77 (2008) 055011 [arXiv:0710.5699] [INSPIRE].
D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev. D 79 (2009) 013011 [arXiv:0808.3340] [INSPIRE].
P. Fileviez Perez and M.B. Wise, On the origin of neutrino masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].
Y. Cai, J.D. Clarke, M.A. Schmidt and R.R. Volkas, Testing radiative neutrino mass models at the LHC, JHEP 02 (2015) 161 [arXiv:1410.0689] [INSPIRE].
D. Restrepo, O. Zapata and C.E. Yaguna, Models with radiative neutrino masses and viable dark matter candidates, JHEP 11 (2013) 011 [arXiv:1308.3655] [INSPIRE].
K.L. McDonald and B.H.J. McKellar, Evaluating the two loop diagram responsible for neutrino mass in Babu’s model, hep-ph/0309270 [INSPIRE].
J. van der Bij and M.J.G. Veltman, Two loop large Higgs mass correction to the ρ parameter, Nucl. Phys. B 231 (1984) 205 [INSPIRE].
G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1411.7038
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Aristizabal Sierra, D., Degee, A., Dorame, L. et al. Systematic classification of two-loop realizations of the Weinberg operator. J. High Energ. Phys. 2015, 40 (2015). https://doi.org/10.1007/JHEP03(2015)040
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2015)040