Abstract
In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. As for the detector, we consider a very massive Gd-doped Water Cherenkov detector. We find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
J.H. Christenson, J.W. Cronin, V.L. Fitch and R. Turlay, Evidence for the 2π decay of the k 02 meson, Phys. Rev. Lett. 13 (1964) 138 [INSPIRE].
M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].
A.D. Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Sov. Phys. Usp. 34 (1991) 392 [Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32] [Usp. Fiz. Nauk 161 (1991) 61] [JETP Lett. 5 (1967) 24] [INSPIRE].
M.B. Gavela, P. Hernández, J. Orloff and O. Pene, Standard model CP-violation and baryon asymmetry, Mod. Phys. Lett. A 9 (1994) 795 [hep-ph/9312215] [INSPIRE].
M.B. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].
B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [Zh. Eksp. Teor. Fiz. 33 (1957) 549] [INSPIRE].
B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE].
Z. Maki, M. Nakagawa, Y. Ohnuki and S. Sakata, A unified model for elementary particles, Prog. Theor. Phys. 23 (1960) 1174 [INSPIRE].
Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].
B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].
T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].
T2K collaboration, K. Abe et al., Observation of electron neutrino appearance in a muon neutrino beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
NOvA collaboration, R. Patterson, First oscillation results from NOvA, talk given at the Fermilab Joint Experimental-Theoretical Physics Seminar, available at http://nova-docdb.fnal.gov/cgi-bin/ShowDocument?docid=13883, August 2015.
A. Palazzo, 3-flavor and 4-flavor implications of the latest T2K and NOvA electron (anti-)neutrino appearance results, arXiv:1509.03148 [INSPIRE].
DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) conceptual design report, available in 4 volumes at http://lbne2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=10688&asof=2015-7-14, (2015).
K. Abe et al., Letter of intent: the Hyper-Kamiokande experiment — detector design and physics potential, arXiv:1109.3262 [INSPIRE].
J. Cao et al., Muon-decay medium-baseline neutrino beam facility, Phys. Rev. ST Accel. Beams 17 (2014) 090101 [arXiv:1401.8125] [INSPIRE].
S. Geer, Neutrino beams from muon storage rings: characteristics and physics potential, Phys. Rev. D 57 (1998) 6989 [Erratum ibid. D 59 (1999) 039903] [hep-ph/9712290] [INSPIRE].
A. De Rujula, M.B. Gavela and P. Hernández, Neutrino oscillation physics with a neutrino factory, Nucl. Phys. B 547 (1999) 21 [hep-ph/9811390] [INSPIRE].
ISS Physics Working Group collaboration, A. Bandyopadhyay, Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [INSPIRE].
Y. Wang, Current status and future prospects of neutrino oscillation, plenary talk at Invisibles ′15, Madrid Spain June 24 2015.
J.F. Beacom and M.R. Vagins, GADZOOKS! Anti-neutrino spectroscopy with large water Cherenkov detectors, Phys. Rev. Lett. 93 (2004) 171101 [hep-ph/0309300] [INSPIRE].
MEMPHYS collaboration, L. Agostino et al., Study of the performance of a large scale water-Cherenkov detector (MEMPHYS), JCAP 01 (2013) 024 [arXiv:1206.6665] [INSPIRE].
P. Huber and T. Schwetz, A low energy neutrino factory with non-magnetic detectors, Phys. Lett. B 669 (2008) 294 [arXiv:0805.2019] [INSPIRE].
M. Vagins, Status and future of Gadolinium-loading in water Cherenkov detectors, talk given at the International Workshop for the Next Generation Nucleon Decay and Neutrino Detector (NNN), Stony Brook U.S.A. October 2015.
M. Vagins, private communication.
F.E. Gray, C. Ruybal, J. Totushek, D.-M. Mei, K. Thomas and C. Zhang, Cosmic ray muon flux at the Sanford Underground Laboratory at homestake, Nucl. Instrum. Meth. A 638 (2011) 63 [arXiv:1007.1921] [INSPIRE].
E. Fernandez-Martinez, The γ = 100β-beam revisited, Nucl. Phys. B 833 (2010) 96 [arXiv:0912.3804] [INSPIRE].
P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].
M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].
T2K collaboration, K. Abe et al., T2K neutrino flux prediction, Phys. Rev. D 87 (2013) 012001 [Addendum ibid. D 87 (2013) 019902] [arXiv:1211.0469] [INSPIRE].
T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].
H. Minakata and H. Nunokawa, Exploring neutrino mixing with low-energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [INSPIRE].
P. Coloma and E. Fernandez-Martinez, Optimization of neutrino oscillation facilities for large θ 13, JHEP 04 (2012) 089 [arXiv:1110.4583] [INSPIRE].
W.J. Marciano, Extra long baseline neutrino oscillations and CP-violation, hep-ph/0108181 [INSPIRE].
ESSnuSB collaboration, E. Baussan et al., A very intense neutrino super beam experiment for leptonic CP-violation discovery based on the European spallation source linac, Nucl. Phys. B 885 (2014) 127 [arXiv:1309.7022] [INSPIRE].
Hyper-Kamiokande Proto- collaboration, K. Abe et al., Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, Prog. Theor. Exp. Phys. 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1511.02859
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Blennow, M., Coloma, P. & Fernández-Martínez, E. The MOMENT to search for CP violation. J. High Energ. Phys. 2016, 197 (2016). https://doi.org/10.1007/JHEP03(2016)197
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2016)197