Abstract
In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].
S. Gariazzo, M. Archidiacono, P.F. de Salas, O. Mena, C.A. Ternes and M. Tórtola, Neutrino masses and their ordering: Global Data, Priors and Models, JCAP 03 (2018) 011 [arXiv:1801.04946] [INSPIRE].
P.F. De Salas, S. Gariazzo, O. Mena, C.A. Ternes and M. Tórtola, Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects, Front. Astron. Space Sci. 5 (2018) 36 [arXiv:1806.11051] [INSPIRE].
LSND collaboration, Evidence for neutrino oscillations from muon decay at rest, Phys. Rev. C 54 (1996) 2685 [nucl-ex/9605001] [INSPIRE].
LSND collaboration, Evidence for νμ → νe neutrino oscillations from LSND, Phys. Rev. Lett. 81 (1998) 1774 [nucl-ex/9709006] [INSPIRE].
LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].
SAGE collaboration, Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
M. Laveder, Unbound neutrino roadmaps, Nucl. Phys. Proc. Suppl. 168 (2007) 344 [INSPIRE].
M.A. Acero, C. Giunti and M. Laveder, Limits on νe and \( {\overline{\nu}}_e \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].
C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].
G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].
S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].
MINOS+ collaboration, Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit, Phys. Rev. Lett. 122 (2019) 091803 [arXiv:1710.06488] [INSPIRE].
IceCube collaboration, Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE].
IceCube collaboration, Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
ANTARES collaboration, Measuring the atmospheric neutrino oscillation parameters and constraining the 3 + 1 neutrino model with ten years of ANTARES data, JHEP 06 (2019) 113 [arXiv:1812.08650] [INSPIRE].
T2K collaboration, Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km, Phys. Rev. D 99 (2019) 071103 [arXiv:1902.06529] [INSPIRE].
S. Gariazzo, C. Giunti, M. Laveder and Y.F. Li, Updated Global 3 + 1 Analysis of Short-BaseLine Neutrino Oscillations, JHEP 06 (2017) 135 [arXiv:1703.00860] [INSPIRE].
M. Dentler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].
C. Giunti and T. Lasserre, eV-scale Sterile Neutrinos, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163 [arXiv:1901.08330] [INSPIRE].
S. Böser et al., Status of Light Sterile Neutrino Searches, Prog. Part. Nucl. Phys. 111 (2020) 103736 [arXiv:1906.01739] [INSPIRE].
C. Giunti and E.M. Zavanin, Appearance-disappearance relation in 3 + Ns short-baseline neutrino oscillations, Mod. Phys. Lett. A 31 (2015) 1650003 [arXiv:1508.03172] [INSPIRE].
E. Bertuzzo, S. Jana, P.A.N. Machado and R. Zukanovich Funchal, Dark Neutrino Portal to Explain MiniBooNE excess, Phys. Rev. Lett. 121 (2018) 241801 [arXiv:1807.09877] [INSPIRE].
E. Bertuzzo, S. Jana, P.A.N. Machado and R. Zukanovich Funchal, Neutrino Masses and Mixings Dynamically Generated by a Light Dark Sector, Phys. Lett. B 791 (2019) 210 [arXiv:1808.02500] [INSPIRE].
P. Ballett, S. Pascoli and M. Ross-Lonergan, U(1)′ mediated decays of heavy sterile neutrinos in MiniBooNE, Phys. Rev. D 99 (2019) 071701 [arXiv:1808.02915] [INSPIRE].
D. Döring, H. Päs, P. Sicking and T.J. Weiler, Sterile Neutrinos with Altered Dispersion Relations as an Explanation for the MiniBooNE, LSND, Gallium and Reactor Anomalies, arXiv:1808.07460 [INSPIRE].
J. Liao, D. Marfatia and K. Whisnant, MiniBooNE, MINOS+ and IceCube data imply a baroque neutrino sector, Phys. Rev. D 99 (2019) 015016 [arXiv:1810.01000] [INSPIRE].
P.B. Denton, Y. Farzan and I.M. Shoemaker, Activating the fourth neutrino of the 3 + 1 scheme, Phys. Rev. D 99 (2019) 035003 [arXiv:1811.01310] [INSPIRE].
J.R. Jordan, Y. Kahn, G. Krnjaic, M. Moschella and J. Spitz, Severe Constraints on New Physics Explanations of the MiniBooNE Excess, Phys. Rev. Lett. 122 (2019) 081801 [arXiv:1810.07185] [INSPIRE].
C.A. Argüelles, M. Hostert and Y.-D. Tsai, Testing New Physics Explanations of MiniBooNE Anomaly at Neutrino Scattering Experiments, Phys. Rev. Lett. 123 (2019) 261801 [arXiv:1812.08768] [INSPIRE].
A. de Gouvêa, O.L.G. Peres, S. Prakash and G.V. Stenico, On The Decaying-Sterile Neutrino Solution to the Electron (Anti)Neutrino Appearance Anomalies, arXiv:1911.01447 [INSPIRE].
M. Dentler, I. Esteban, J. Kopp and P. Machado, Decaying Sterile Neutrinos and the Short Baseline Oscillation Anomalies, arXiv:1911.01427 [INSPIRE].
C. Giunti, A. Ioannisian and G. Ranucci, A new analysis of the MiniBooNE low-energy excess, arXiv:1912.01524 [INSPIRE].
H. Pas, S. Pakvasa and T.J. Weiler, Sterile-active neutrino oscillations and shortcuts in the extra dimension, Phys. Rev. D 72 (2005) 095017 [hep-ph/0504096] [INSPIRE].
S. Hollenberg, O. Micu, H. Pas and T.J. Weiler, Baseline-dependent neutrino oscillations with extra-dimensional shortcuts, Phys. Rev. D 80 (2009) 093005 [arXiv:0906.0150] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].
N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali and J. March-Russell, Neutrino masses from large extra dimensions, Phys. Rev. D 65 (2001) 024032 [hep-ph/9811448] [INSPIRE].
D. Marfatia, H. Pas, S. Pakvasa and T.J. Weiler, A model of superluminal neutrinos, Phys. Lett. B 707 (2012) 553 [arXiv:1112.0527] [INSPIRE].
D. Döring and H. Päs, Sterile Neutrino Shortcuts in Asymmetrically Warped Extra Dimensions, Eur. Phys. J. C 79 (2019) 604 [arXiv:1808.07734] [INSPIRE].
S. Hollenberg, O. Micu, H. Pas and T.J. Weiler, Explaining LSND using extra-dimensional shortcuts, AIP Conf. Proc. 1200 (2010) 952 [arXiv:0908.3986] [INSPIRE].
S. Hollenberg, O. Micu and H. Pas, Explaining LSND and MiniBooNE using altered neutrino dispersion relations, Prog. Part. Nucl. Phys. 64 (2010) 193 [arXiv:0911.1018] [INSPIRE].
E. Aeikens, H. Päs, S. Pakvasa and T.J. Weiler, Suppression of cosmological sterile neutrino production by altered dispersion relations, Phys. Rev. D 94 (2016) 113010 [arXiv:1606.06695] [INSPIRE].
S. Gariazzo, P.F. de Salas and S. Pastor, Thermalisation of sterile neutrinos in the early Universe in the 3 + 1 scheme with full mixing matrix, JCAP 07 (2019) 014 [arXiv:1905.11290] [INSPIRE].
ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
MINOS collaboration, Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
V.A. Kostelecky and M. Mewes, Lorentz and CPT violation in neutrinos, Phys. Rev. D 69 (2004) 016005 [hep-ph/0309025] [INSPIRE].
J.S. Diaz and A. Kostelecky, Lorentz- and CPT-violating models for neutrino oscillations, Phys. Rev. D 85 (2012) 016013 [arXiv:1108.1799] [INSPIRE].
A. Kostelecky and M. Mewes, Neutrinos with Lorentz-violating operators of arbitrary dimension, Phys. Rev. D 85 (2012) 096005 [arXiv:1112.6395] [INSPIRE].
G. Barenboim, M. Masud, C.A. Ternes and M. Tórtola, Exploring the intrinsic Lorentz-violating parameters at DUNE, Phys. Lett. B 788 (2019) 308 [arXiv:1805.11094] [INSPIRE].
Z.-z. Xing, A full parametrization of the 6 × 6 flavor mixing matrix in the presence of three light or heavy sterile neutrinos, Phys. Rev. D 85 (2012) 013008 [arXiv:1110.0083] [INSPIRE].
Daya Bay collaboration, Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261] [INSPIRE].
KamLAND collaboration, Precision Measurement of Neutrino Oscillation Parameters with KamLAND, Phys. Rev. Lett. 100 (2008) 221803 [arXiv:0801.4589] [INSPIRE].
T2K collaboration, Search for CP-violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 × 1021 Protons on Target, Phys. Rev. Lett. 121 (2018) 171802 [arXiv:1807.07891] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.02329
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Barenboim, G., Martínez-Miravé, P., Ternes, C. et al. Sterile neutrinos with altered dispersion relations revisited. J. High Energ. Phys. 2020, 70 (2020). https://doi.org/10.1007/JHEP03(2020)070
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2020)070