Abstract
We investigate the admissible vector-valued modular forms having three independent characters and vanishing Wronskian index and determine which ones correspond to genuine 2d conformal field theories. This is done by finding bilinear coset-type relations that pair them into meromorphic characters with central charges 8, 16, 24, 32 and 40. Such pairings allow us to identify some characters with definite CFTs and rule out others. As a key result we classify all unitary three-character CFT with vanishing Wronskian index, excluding c = 8, 16. The complete list has two infinite affine series Br,1, Dr,1 and 45 additional theories. As a by-product, at higher values of the total central charge we also find constraints on the existence or otherwise of meromorphic theories. We separately list several cases that potentially correspond to Intermediate Vertex Operator Algebras.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S.D. Mathur, S. Mukhi and A. Sen, Differential Equations for Correlators and Characters in Arbitrary Rational Conformal Field Theories, Nucl. Phys. B 312 (1989) 15 [INSPIRE].
S.D. Mathur, S. Mukhi and A. Sen, On the Classification of Rational Conformal Field Theories, Phys. Lett. B 213 (1988) 303 [INSPIRE].
S.D. Mathur, S. Mukhi and A. Sen, Reconstruction of Conformal Field Theories From Modular Geometry on the Torus, Nucl. Phys. B 318 (1989) 483 [INSPIRE].
S.G. Naculich, Differential equations for rational conformal characters, Nucl. Phys. B 323 (1989) 423 [INSPIRE].
E.B. Kiritsis, Fuchsian Differential Equations for Characters on the Torus: A Classification, Nucl. Phys. B 324 (1989) 475 [INSPIRE].
P. Bantay and T. Gannon, Conformal characters and the modular representation, JHEP 02 (2006) 005 [hep-th/0512011] [INSPIRE].
G. Mason, Vector-valued modular forms and linear differential operators, Int. J. Number Theory 03 (2007) 377.
G. Mason, 2-Dimensional vector-valued modular forms, Ramanujan J. 17 (2007) 405.
P. Bantay and T. Gannon, Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Num. Theor. Phys. 1 (2007) 651 [INSPIRE].
M.P. Tuite, Exceptional Vertex Operator Algebras and the Virasoro Algebra, Contemp. Math. 497 (2009) 213 [arXiv:0811.4523] [INSPIRE].
P. Bantay, Modular differential equations for characters of RCFT, JHEP 06 (2010) 021 [arXiv:1004.2579] [INSPIRE].
C. Marks, Irreducible vector-valued modular forms of dimension less than six, arXiv:1004.3019 [INSPIRE].
T. Gannon, The theory of vector-modular forms for the modular group, Contrib. Math. Comput. Sci. 8 (2014) 247 [arXiv:1310.4458] [INSPIRE].
K. Kawasetsu, The Intermediate Vertex Subalgebras of the Lattice Vertex Operator Algebras, Lett. Math. Phys. 104 (2013) 157.
H.R. Hampapura and S. Mukhi, On 2d Conformal Field Theories with Two Characters, JHEP 01 (2016) 005 [arXiv:1510.04478] [INSPIRE].
C. Franc and G. Mason, Hypergeometric Series, Modular Linear Differential Equations, and Vector-valued Modular Forms, Ramanujan J. 41 (2016) 233.
M.R. Gaberdiel, H.R. Hampapura and S. Mukhi, Cosets of Meromorphic CFTs and Modular Differential Equations, JHEP 04 (2016) 156 [arXiv:1602.01022] [INSPIRE].
H.R. Hampapura and S. Mukhi, Two-dimensional RCFT’s without Kac-Moody symmetry, JHEP 07 (2016) 138 [arXiv:1605.03314] [INSPIRE].
Y. Arike, M. Kaneko, K. Nagatomo and Y. Sakai, Affine Vertex Operator Algebras and Modular Linear Differential Equations, Lett. Math. Phys. 106 (2016) 693 [INSPIRE].
J.E. Tener and Z. Wang, On classification of extremal non-holomorphic conformal field theories, J. Phys. A 50 (2017) 115204 [arXiv:1611.04071] [INSPIRE].
G. Mason, K. Nagatomo and Y. Sakai, Vertex Operator Algebras with Two Simple Modules — the Mathur-Mukhi-Sen Theorem Revisited, arXiv e-prints [https://doi.org/10.48550/arXiv.1803.11281].
J.A. Harvey and Y. Wu, Hecke Relations in Rational Conformal Field Theory, JHEP 09 (2018) 032 [arXiv:1804.06860] [INSPIRE].
A.R. Chandra and S. Mukhi, Towards a Classification of Two-Character Rational Conformal Field Theories, JHEP 04 (2019) 153 [arXiv:1810.09472] [INSPIRE].
A.R. Chandra and S. Mukhi, Curiosities above c = 24, SciPost Phys. 6 (2019) 053 [arXiv:1812.05109] [INSPIRE].
J.-B. Bae, K. Lee and S. Lee, Monster Anatomy, JHEP 07 (2019) 026 [arXiv:1811.12263] [INSPIRE].
J.-B. Bae, S. Lee and J. Song, Modular Constraints on Superconformal Field Theories, JHEP 01 (2019) 209 [arXiv:1811.00976] [INSPIRE].
G. Mason, K. Nagatomo and Y. Sakai, Vertex Operator Algebras with central charge 8 and 16, arXiv e-prints [https://doi.org/10.48550/arXiv.1812.06357].
C. Franc and G. Mason, Classification of some vertex operator algebras of rank 3, arXiv e-prints [https://doi.org/10.48550/arXiv.1905.07500].
J.-B. Bae et al., Fermionic rational conformal field theories and modular linear differential equations, PTEP 2021 (2021) 08B104 [arXiv:2010.12392] [INSPIRE].
S. Mukhi, R. Poddar and P. Singh, Rational CFT with three characters: the quasi-character approach, JHEP 05 (2020) 003 [arXiv:2002.01949] [INSPIRE].
J. Kaidi and E. Perlmutter, Discreteness and integrality in Conformal Field Theory, JHEP 02 (2021) 064 [arXiv:2008.02190] [INSPIRE].
A. Das, C.N. Gowdigere and J. Santara, Wronskian Indices and Rational Conformal Field Theories, JHEP 04 (2021) 294 [arXiv:2012.14939] [INSPIRE].
J. Kaidi, Y.-H. Lin and J. Parra-Martinez, Holomorphic modular bootstrap revisited, JHEP 12 (2021) 151 [arXiv:2107.13557] [INSPIRE].
A. Das, C.N. Gowdigere and J. Santara, Classifying three-character RCFTs with Wronskian index equalling 0 or 2, JHEP 11 (2021) 195 [arXiv:2108.01060] [INSPIRE].
J.-B. Bae et al., Bootstrapping fermionic rational CFTs with three characters, JHEP 01 (2022) 089 [arXiv:2108.01647] [INSPIRE].
Z. Duan, K. Lee and K. Sun, Hecke relations, cosets and the classification of 2d RCFTs, JHEP 09 (2022) 202 [arXiv:2206.07478] [INSPIRE].
A.N. Schellekens, Meromorphic c = 24 conformal field theories, Commun. Math. Phys. 153 (1993) 159 [hep-th/9205072] [INSPIRE].
J.C. Grady, C.H. Lam, J.E. Tener and H. Yamauchi, Classification of extremal vertex operator algebras with two simple modules, J. Math. Phys. 61 (2020) 052302 [INSPIRE].
S. Mukhi and B.C. Rayhaun, Classification of Unitary RCFTs with Two Primaries and Central Charge Less Than 25, arXiv:2208.05486 [INSPIRE].
A. Dymarsky and A. Shapere, Quantum stabilizer codes, lattices, and CFTs, JHEP 21 (2020) 160 [arXiv:2009.01244] [INSPIRE].
A. Dymarsky and R.R. Kalloor, Fake Z, arXiv:2211.15699 [INSPIRE].
S.D. Mathur and A. Sen, Group Theoretic Classification of Rotational Conformal Field Theories With Algebraic Characters, Nucl. Phys. B 327 (1989) 725 [INSPIRE].
P. Goddard, A. Kent and D.I. Olive, Virasoro Algebras and Coset Space Models, Phys. Lett. B 152 (1985) 88 [INSPIRE].
I.B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and virasoro algebras, Duke Math. J. 66 (1992) 123.
A. Das, C.N. Gowdigere and S. Mukhi, New meromorphic CFTs from cosets, JHEP 07 (2022) 152 [arXiv:2207.04061] [INSPIRE].
E.P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B 300 (1988) 360 [INSPIRE].
P. Goddard, A. Kent and D.I. Olive, Unitary Representations of the Virasoro and Supervirasoro Algebras, Commun. Math. Phys. 103 (1986) 105 [INSPIRE].
C. Dong, G. Mason and Y. Zhu, Discrete Series of the Virasoro Algebra and the Moonshine Module, in Proceedings of Symposia in Pure Mathematics Vol 56, Part 2: Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, W.J. Haboush and B.J. Parshall, eds., pp. 295–316, American Mathematical Society (1994).
G. Hoehn, Generalized Moonshine for the Baby Monster, https://www.math.ksu.edu/~gerald/papers/baby8.ps (2003).
G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster (Self-dual Vertex Operator Super Algebras and the Baby Monster), arXiv:0706.0236.
I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the monster, Academic Press, Boston, U.S.A. (1988) [INSPIRE].
R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992) 405.
E. Rowell, R. Stong and Z. Wang, On classification of modular tensor categories, arXiv:0712.1377 [INSPIRE].
R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie algebras and representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].
P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York (1997) [https://doi.org/10.1007/978-1-4612-2256-9] [INSPIRE].
A. Cappelli and J.-B. Zuber, A-D-E Classification of Conformal Field Theories, Scholarpedia 5 (2010) 10314 [arXiv:0911.3242] [INSPIRE].
D. Gepner and E. Witten, String Theory on Group Manifolds, Nucl. Phys. B 278 (1986) 493 [INSPIRE].
A. Das, C.N. Gowdigere, S. Mukhi and J. Santara, CFTs and Cosets of Three Characters with Higher Wronskian Indices, to appear.
M. Kervaire, Unimodular lattices with a complete root system, Enseign. Math. 40 (1994) 59.
O.D. King, A mass formula for unimodular lattices with no roots, Math. Comput. 72 (2003) 839 [math/0012231].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2212.03136
Adjunct Professor, ICTS-TIFR, Bengaluru. (Sunil Mukhi)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Das, A., Gowdigere, C.N. & Mukhi, S. Meromorphic cosets and the classification of three-character CFT. J. High Energ. Phys. 2023, 23 (2023). https://doi.org/10.1007/JHEP03(2023)023
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2023)023