Abstract
In this paper we study the SU(3)-gluodynamics shear viscosity temperature dependence on the lattice. To do so, we measure the correlation functions of the energy-momentum tensor in the range of temperatures T /T c ∈ [0.9, 1.5]. To extract the shear viscosity we used two approaches. The first one is to fit the lattice data with a physically motivated ansatz for the spectral function with unknown parameters and then determine the shear viscosity. The second approach is to apply the Backus-Gilbert method allowing to extract the shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the range T /T c ∈ [0.9, 1.5] the SU(3)-gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s close to the value 1/4π of the N = 4 Supersymmetric Yang-Mills theory.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy ion collisions, nucl-th/0305084 [INSPIRE].
J.-Y. Ollitrault, Relativistic hydrodynamics for heavy-ion collisions, Eur. J. Phys. 29 (2008) 275 [arXiv:0708.2433] [INSPIRE].
STAR collaboration, K.H. Ackermann et al., Elliptic flow in Au + Au collisions at \( \sqrt{s_{N\;N}}=130 \) GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].
STAR collaboration, C. Adler et al., Elliptic flow from two and four particle correlations in Au + Au collisions at \( \sqrt{s_{N\;N}}=130 \) GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].
H. Song, QGP viscosity at RHIC and the LHC — a 2012 status report, Nucl. Phys. A904-905 (2013) 114c [arXiv:1210.5778] [INSPIRE].
G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 2. Beyond leading log, JHEP 05 (2003) 051 [hep-ph/0302165] [INSPIRE].
V. Ozvenchuk, O. Linnyk, M.I. Gorenstein, E.L. Bratkovskaya and W. Cassing, Shear and bulk viscosities of strongly interacting “infinite” parton-hadron matter within the parton-hadron-string dynamics transport approach, Phys. Rev. C 87 (2013) 064903 [arXiv:1212.5393] [INSPIRE].
R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin and H. Berrehrah, Transport coefficients from the Nambu-Jona-Lasinio model for SU(3) f , Phys. Rev. C 88 (2013) 045204 [arXiv:1305.7180] [INSPIRE].
H. Berrehrah, E. Bratkovskaya, T. Steinert and W. Cassing, A dynamical quasiparticle approach for the QGP bulk and transport properties, Int. J. Mod. Phys. E 25 (2016) 1642003 [arXiv:1605.02371] [INSPIRE].
N. Christiansen, M. Haas, J.M. Pawlowski and N. Strodthoff, Transport Coefficients in Yang-Mills Theory and QCD, Phys. Rev. Lett. 115 (2015) 112002 [arXiv:1411.7986] [INSPIRE].
F. Karsch and H.W. Wyld, Thermal Green’s Functions and Transport Coefficients on the Lattice, Phys. Rev. D 35 (1987) 2518 [INSPIRE].
A. Nakamura and S. Sakai, Transport coefficients of gluon plasma, Phys. Rev. Lett. 94 (2005) 072305 [hep-lat/0406009] [INSPIRE].
H.B. Meyer, A calculation of the shear viscosity in SU(3)-gluodynamics, Phys. Rev. D 76 (2007) 101701 [arXiv:0704.1801] [INSPIRE].
H.B. Meyer, Transport properties of the quark-gluon plasma from lattice QCD, Nucl. Phys. A 830 (2009) 641C [arXiv:0907.4095] [INSPIRE].
S.W. Mages, S. Borsányi, Z. Fodor, A. Schäfer and K. Szabó, Shear Viscosity from Lattice QCD. PoS(LATTICE2014)232 [INSPIRE].
V.V. Braguta and A.Yu. Kotov, Calculation of the viscosity of SU(2) gluodynamics with the lattice simulation, JETP Lett. 98 (2013) 127.
N.Yu. Astrakhantsev, V.V. Braguta and A.Yu. Kotov, Study of shear viscosity of SU(2)-gluodynamics within lattice simulation, JHEP 09 (2015) 082 [arXiv:1507.06225] [INSPIRE].
R. Kubo, Statistical mechanical theory of irreversible processes. 1. General theory and simple applications in magnetic and conduction problems, J. Phys. Soc. Jap. 12 (1957) 570 [INSPIRE].
H.B. Meyer, Locality and statistical error reduction on correlation functions, JHEP 01 (2003) 048 [hep-lat/0209145] [INSPIRE].
H.B. Meyer, Energy-momentum tensor correlators and spectral functions, JHEP 08 (2008) 031 [arXiv:0806.3914] [INSPIRE].
A.L. Kataev, N.V. Krasnikov and A.A. Pivovarov, Two Loop Calculations for the Propagators of Gluonic Currents, Nucl. Phys. B 198 (1982) 508 [Erratum ibid. B 490 (1997) 505] [hep-ph/9612326] [INSPIRE].
J. Engels, F. Karsch and T. Scheideler, Determination of anisotropy coefficients for SU(3) gauge actions from the integral and matching methods, Nucl. Phys. B 564 (2000) 303 [hep-lat/9905002] [INSPIRE].
H.B. Meyer, Transport Properties of the quark-gluon Plasma: A Lattice QCD Perspective, Eur. Phys. J. A 47 (2011) 86 [arXiv:1104.3708] [INSPIRE].
H.B. Meyer, Finite temperature sum rules in lattice gauge theory, Nucl. Phys. B 795 (2008) 230 [arXiv:0711.0738] [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Theoretical Foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].
G. Aarts and J.M. Martinez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].
H.B. Meyer, Energy-momentum tensor correlators and viscosity, PoS(LATTICE 2008)017 [arXiv:0809.5202] [INSPIRE].
G. Backus and F. Gilbert, The resolving power of gross earth data, Geophys. J. Int. 16 (1968) 169.
G. Backus and F. Gilbert; Uniqueness in the inversion of inaccurate gross earth data, Phil. Trans. Roy. Soc. Lond. A 266 (1970) 123.
B.B. Brandt, A. Francis, H.B. Meyer and D. Robaina, Pion quasiparticle in the low-temperature phase of QCD, Phys. Rev. D 92 (2015) 094510 [arXiv:1506.05732] [INSPIRE].
B.B. Brandt, A. Francis, B. Jäger and H.B. Meyer, Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors, Phys. Rev. D 93 (2016) 054510 [arXiv:1512.07249] [INSPIRE].
D.L. Boyda, V.V. Braguta, M.I. Katsnelson and M.V. Ulybyshev, Many-body effects on graphene conductivity: Quantum Monte Carlo calculations, Phys. Rev. B 94 (2016) 085421 [arXiv:1601.05315] [INSPIRE].
S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Non-perturbative quark mass renormalization in quenched lattice QCD, Nucl. Phys. B 544 (1999) 669 [Erratum ibid. B 582 (2000) 762] [hep-lat/9810063] [INSPIRE].
J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications, Cambridge University Press (2011).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1701.02266
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Astrakhantsev, N.Y., Braguta, V.V. & Kotov, A.Y. Temperature dependence of shear viscosity of SU(3)-gluodynamics within lattice simulation. J. High Energ. Phys. 2017, 101 (2017). https://doi.org/10.1007/JHEP04(2017)101
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2017)101