Abstract
The associated production of a \( b\overline{b} \) pair with a Higgs boson could provide an important probe to both the size and the phase of the bottom-quark Yukawa coupling, yb. However, the signal is shrouded by several background processes including the irreducible Zh, Z → \( b\overline{b} \) background. We show that the analysis of kinematic shapes provides us with a concrete prescription for separating the yb-sensitive production modes from both the irreducible and the QCD-QED backgrounds using the \( b\overline{b}\gamma \gamma \) final state. We draw a page from game theory and use Shapley values to make Boosted Decision Trees interpretable in terms of kinematic measurables and provide physics insights into the variances in the kinematic shapes of the different channels that help us complete this feat. Adding interpretability to the machine learning algorithm opens up the black-box and allows us to cherry-pick only those kinematic variables that matter most in the analysis. We resurrect the hope of constraining the size and, possibly, the phase of yb using kinematic shape studies of \( b\overline{b}h \) production with the full HL-LHC data and at FCC-hh.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ATLAS collaboration, A combination of measurements of Higgs boson production and decay using up to 139 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Tech. Rep. ATLAS-CONF-2020-027, CERN, Geneva (Aug, 2020).
CMS collaboration, Observation of \( \mathrm{t}\overline{\mathrm{t}}H \) production, Phys. Rev. Lett. 120 (2018) 231801 [arXiv:1804.02610] [INSPIRE].
ATLAS collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector, Phys. Lett. B 784 (2018) 173 [arXiv:1806.00425] [INSPIRE].
J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].
ATLAS collaboration, Observation of H → \( b\overline{b} \) decays and V H production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].
CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
M. Cepeda et al., Report from Working Group 2 : Higgs Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [INSPIRE].
R. V. Harlander and W. B. Kilgore, Higgs boson production in bottom quark fusion at next-to-next-to leading order, Phys. Rev. D 68 (2003) 013001 [hep-ph/0304035] [INSPIRE].
S. Dittmaier, M. Krämer and M. Spira, Higgs radiation off bottom quarks at the Tevatron and the CERN LHC, Phys. Rev. D 70 (2004) 074010 [hep-ph/0309204] [INSPIRE].
S. Dawson, C. B. Jackson, L. Reina and D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders, Phys. Rev. D 69 (2004) 074027 [hep-ph/0311067] [INSPIRE].
J. M. Campbell et al., Higgs boson production in association with bottom quarks, in 3rd Les Houches Workshop on Physics at TeV Colliders, Les Houches France (2004) [hep-ph/0405302] [INSPIRE].
S. Dawson, C. B. Jackson, L. Reina and D. Wackeroth, Higgs production in association with bottom quarks at hadron colliders, Mod. Phys. Lett. A 21 (2006) 89 [hep-ph/0508293] [INSPIRE].
M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].
S. Forte, D. Napoletano and M. Ubiali, Higgs production in bottom-quark fusion in a matched scheme, Phys. Lett. B 751 (2015) 331 [arXiv:1508.01529] [INSPIRE].
M. Bonvini, A. S. Papanastasiou and F. J. Tackmann, Resummation and matching of b-quark mass effects in \( b\overline{b}H \) production, JHEP 11 (2015) 196 [arXiv:1508.03288] [INSPIRE].
B. Jager, L. Reina and D. Wackeroth, Higgs boson production in association with b jets in the POWHEG BOX, Phys. Rev. D 93 (2016) 014030 [arXiv:1509.05843] [INSPIRE].
M. Bonvini, A. S. Papanastasiou and F. J. Tackmann, Matched predictions for the \( b\overline{b}H \) cross section at the 13 TeV LHC, JHEP 10 (2016) 053 [arXiv:1605.01733] [INSPIRE].
N. Deutschmann, F. Maltoni, M. Wiesemann and M. Zaro, Top-Yukawa contributions to bbH production at the LHC, JHEP 07 (2019) 054 [arXiv:1808.01660] [INSPIRE].
D. Pagani, H.-S. Shao and M. Zaro, RIP \( Hb\overline{b} \): how other Higgs production modes conspire to kill a rare signal at the LHC, JHEP 11 (2020) 036 [arXiv:2005.10277] [INSPIRE].
L. S. Shapley, Notes on the n-Person Game-II: The Value of an n-Person Game, Rand Corporation, Santa Monica U.S.A. (1951).
T. Ghosh, R. Godbole and X. Tata, Determining the spacetime structure of bottom-quark couplings to spin-zero particles, Phys. Rev. D 100 (2019) 015026 [arXiv:1904.09895] [INSPIRE].
Q. Bi, K. Chai, J. Gao, Y. Liu and H. Zhang, Investigating Bottom-Quark Yukawa Interaction at Higgs Factory, Chin. Phys. C 45 (2021) 023105 [arXiv:2009.02000] [INSPIRE].
Y. Alexahin et al., Muon Collider Higgs Factory for Snowmass 2013, in Community Summer Study 2013: Snowmass on the Mississippi, Minneapolis U.S.A. (2013) [arXiv:1308.2143] [INSPIRE].
ATLAS collaboration, Study of the double Higgs production channel H (→ \( b\overline{b} \))H (→ γγ) with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2017-001 (2017).
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
D. Fäh and N. Greiner, Diphoton production in association with two bottom jets, Eur. Phys. J. C 77 (2017) 750 [arXiv:1706.08309] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), New York U.S.A. (2016), pg. 785 [arXiv:1603.02754] [INSPIRE].
M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, arXiv:1603.04467.
C. Molnar, Interpretable Machine Learning, Lulu Press, Morrisville U.S.A. (2020).
S. M. Lundberg and S.-I. Lee, A unified approach to interpreting model predictions, in Advances in Neural Information Processing Systems. Vol. 30, I. Guyon et al. eds., Curran Associates, Inc., Red Hook U.S.A. (2017), pg. 4765 [arXiv:1705.07874].
S. M. Lundberg, G. G. Erion and S.-I. Lee, Consistent Individualized Feature Attribution for Tree Ensembles, arXiv:1802.03888.
S. M. Lundberg et al., From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell. 2 (2020) 56.
M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e+ e− → W + W −, Z. Phys. C 62 (1994) 397 [INSPIRE].
J. Brehmer, K. Cranmer, F. Kling and T. Plehn, Better Higgs boson measurements through information geometry, Phys. Rev. D 95 (2017) 073002 [arXiv:1612.05261] [INSPIRE].
H. Bahl et al., Indirect \( \mathcal{CP} \) probes of the Higgs-top-quark interaction: current LHC constraints and future opportunities, JHEP 11 (2020) 127 [arXiv:2007.08542] [INSPIRE].
B. Bortolato, J. F. Kamenik, N. Košnik and A. Smolkovič, Optimized probes of C P -odd effects in the \( t\overline{t}h \) process at hadron colliders, Nucl. Phys. B 964 (2021) 115328 [arXiv:2006.13110] [INSPIRE].
Q.-H. Cao, K.-P. Xie, H. Zhang and R. Zhang, A New Observable for Measuring CP Property of Top-Higgs Interaction, Chin. Phys. C 45 (2021) 023117 [arXiv:2008.13442] [INSPIRE].
K. Ma, Enhancing C P Measurement of the Yukawa Interactions of Top-Quark at e− e+ Collider, Phys. Lett. B 797 (2019) 134928 [arXiv:1809.07127] [INSPIRE].
W.-S. Hou, M. Kohda and T. Modak, Probing for extra top Yukawa couplings in light of \( t\overline{t}h(125) \) observation, Phys. Rev. D 98 (2018) 075007 [arXiv:1806.06018] [INSPIRE].
D. Gonçalves, K. Kong and J. H. Kim, Probing the top-Higgs Yukawa CP structure in dileptonic \( t\overline{t}h \) with M2-assisted reconstruction, JHEP 06 (2018) 079 [arXiv:1804.05874] [INSPIRE].
N. Mileo, K. Kiers, A. Szynkman, D. Crane and E. Gegner, Pseudoscalar top-Higgs coupling: exploration of CP-odd observables to resolve the sign ambiguity, JHEP 07 (2016) 056 [arXiv:1603.03632] [INSPIRE].
A. V. Gritsan, R. Röntsch, M. Schulze and M. Xiao, Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques, Phys. Rev. D 94 (2016) 055023 [arXiv:1606.03107] [INSPIRE].
S. Amor Dos Santos et al., Probing the CP nature of the Higgs coupling in \( t\overline{t}h \) events at the LHC, Phys. Rev. D 96 (2017) 013004 [arXiv:1704.03565] [INSPIRE].
F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].
F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J. C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].
F. Demartin, B. Maier, F. Maltoni, K. Mawatari and M. Zaro, tWH associated production at the LHC, Eur. Phys. J. C 77 (2017) 34 [arXiv:1607.05862] [INSPIRE].
J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139 [arXiv:1905.03764] [INSPIRE].
J. Salvatier, T. V. Wiecki and C. Fonnesbeck, Probabilistic programming in python using PyMC3, PeerJ Comput. Sci. 2 (2016) e55.
ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi and B. P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP-violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].
M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko and C. W. Clark, Search for New Physics with Atoms and Molecules, Rev. Mod. Phys. 90 (2018) 025008 [arXiv:1710.01833] [INSPIRE].
T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].
A. C. Vutha, M. Horbatsch and E. A. Hessels, Oriented polar molecules in a solid inert-gas matrix: a proposed method for measuring the electric dipole moment of the electron, Atoms 6 (2018) 3 [arXiv:1710.08785] [INSPIRE].
W. B. Cairncross et al., Precision Measurement of the Electron’s Electric Dipole Moment Using Trapped Molecular Ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].
A. C. Vutha, M. Horbatsch and E. A. Hessels, Orientation-dependent hyperfine structure of polar molecules in a rare-gas matrix: A scheme for measuring the electron electric dipole moment, Phys. Rev. A 98 (2018) 032513 [arXiv:1806.06774] [INSPIRE].
N. R. Hutzler et al., Searches for new sources of CP-violation using molecules as quantum sensors, arXiv:2010.08709 [INSPIRE].
R. K. Ellis et al., Physics Briefing Book : Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775 [INSPIRE].
D. Egana-Ugrinovic and S. Thomas, Higgs Boson Contributions to the Electron Electric Dipole Moment, arXiv:1810.08631 [INSPIRE].
J. Brod and E. Stamou, Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order, arXiv:1810.12303 [INSPIRE].
J. Brod and D. Skodras, Electric dipole moment constraints on CP-violating light-quark Yukawas, JHEP 01 (2019) 233 [arXiv:1811.05480] [INSPIRE].
C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nat. Mach. Intell. 1 (2019) 206 [arXiv:1811.10154].
J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].
Y. Bengio, A. Courville and P. Vincent, Representation Learning: A Review and New Perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013) 1798.
J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61 (2015) 85.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2011.13945
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Grojean, C., Paul, A. & Qian, Z. Resurrecting \( b\overline{b}h \) with kinematic shapes. J. High Energ. Phys. 2021, 139 (2021). https://doi.org/10.1007/JHEP04(2021)139
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2021)139