Abstract
We consider a set of non-stationary quantum models. We show that their dynamics can be studied using links to Knizhnik-Zamolodchikov (KZ) equations for correlation functions in conformal field theories. We specifically consider the boundary Wess-Zumino-Novikov-Witten model, where equations for correlators of primary fields are defined by an extension of KZ equations and explore the links to dynamical systems. As an example of the workability of the proposed method, we provide an exact solution to a dynamical system that is a specific multi-level generalization of the two-level Landau-Zenner system known in the literature as the Demkov-Osherov model. The method can be used to study the nonequilibrium dynamics in various multi-level systems from the solution of the corresponding KZ equations.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A. Kamenev, Field theory of non-equilibrium systems, Cambridge University Press, Cambridge, U.K. (2011).
A. Smith, M. S. Kim, F. Pollmann and J. Knolle, Simulating quantum many-body dynamics on a current digital quantum computer, npj Quant. Inf. 5 (2019) 106.
S. Ashhab, J. R. Johansson and F. Nori, Decoherence in a scalable adiabatic quantum computer, Phys. Rev. A 74 (2006) 052330.
J. Johansson et al., Landau-Zener transitions in a superconducting flux qubit, Phys. Rev. B 80 (2009) 012507.
T. A. Sedrakyan and V. M. Galitski, Majorana path integral for nonequilibrium dynamics of two-level systems, Phys. Rev. B 83 (2011) 134303.
F. Forster et al., Characterization of qubit dephasing by Landau-Zener-Stückelberg-Majorana interferometry, Phys. Rev. Lett. 112 (2014) 116803.
T. Albash, S. Boixo, D. A. Lidar and P. Zanardi, Quantum adiabatic Markovian master equations, New J. Phys. 14 (2012) 123016.
B. Bauer, T. Karzig, R. Mishmash, A. Antipov and J. Alicea, Dynamics of Majorana-based qubits operated with an array of tunable gates, SciPost Phys. 5 (2018) 004.
D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot and J. Muga, Shortcuts to adiabaticity: concepts, methods, and applications, Rev. Mod. Phys. 91 (2019) 045001 [arXiv:1904.08448].
S. Matityahu, H. Schmidt, A. Bilmes, A. Shnirman, G. Weiss, A. V. Ustinov et al., Dynamical decoupling of quantum two-level systems by coherent multiple Landau-Zener transitions, npj Quant. Inf. 5 (2019) 114.
X. Xu, Z. Zhang and Z. Liang, Nonequilibrium Landau-Zener tunneling in exciton-polariton condensates, Phys. Rev. A 102 (2020) 033317.
A. Niranjan, W. Li and R. Nath, Landau-Zener transitions and adiabatic impulse approximation in an array of two Rydberg atoms with time-dependent detuning, Phys. Rev. A 101 (2020) 063415.
X. Yang, R. Liu, J. Li and X. Peng, Optimizing adiabatic quantum pathways via a learning algorithm, Phys. Rev. A 102 (2020) 012614.
D. L. Campbell et al., Universal nonadiabatic control of small-gap superconducting qubits, Phys. Rev. X 10 (2020) 041051 [INSPIRE].
Z.-T. Zhang and D. E. Liu, Readout of Majorana bound states via Landau-Zener transition, Phys. Rev. B 103 (2021) 195401.
A. D. Stehli, Analog quantum simulator of the multistate Landau-Zener model, Doctoral dissertation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 20 May 2021.
A. R. Klots and L. B. Ioffe, Set of holonomic and protected gates on topological qubits for a realistic quantum computer, Phys. Rev. B 104 (2021) 144502.
J. R. McClean et al., Low-depth mechanisms for quantum optimization, PRX Quantum 2 (2021) 030312.
M. Rodriguez-Vega et al., Real-time simulation of light-driven spin chains on quantum computers, arXiv:2108.05975.
R. Richardson, A restricted class of exact eigenstates of the pairing-force hamiltonian, Phys. Lett. 3 (1963) 277.
R. W. Richardson, Pairing in the limit of a large number of particles, J. Math. Phys. 18 (1977) 1802.
J. von Delft and D. Ralph, Spectroscopy of discrete energy levels in ultrasmall metallic grains, Phys. Rept. 345 (2001) 61.
J. von Delft and R. Poghossian, Algebraic Bethe ansatz for a discrete-state BCS pairing model, Phys. Rev. B 66 (2002) 134502 [cond-mat/0106405] [INSPIRE].
J. Dukelsky, S. Pittel and G. Sierra, Colloquium: exactly solvable Richardson-Gaudin models for many-body quantum systems, Rev. Mod. Phys. 76 (2004) 643 [nucl-th/0405011] [INSPIRE].
E. A. Yuzbashyan, A. A. Baytin and B. L. Altshuler, Finite-size corrections for the pairing hamiltonian, Phys. Rev. B 71 (2005) 094505.
E. A. Yuzbashyan, Normal and anomalous solitons in the theory of dynamical Cooper pairing, Phys. Rev. B 78 (2008) 184507.
R. Teodorescu, Coherent oscillations in superconducting cold Fermi atoms and their applications, in Leading-edge superconductivity research developments, T. Watanabe ed., Nova Science Publishers, (2008).
A. M. García-García, J. D. Urbina, E. A. Yuzbashyan, K. Richter and B. L. Altshuler, Bardeen-Cooper-Schrieffer theory of finite-size superconducting metallic grains, Phys. Rev. Lett. 100 (2008) 187001.
A. Faribault, P. Calabrese and J.-S. Caux, Exact mesoscopic correlation functions of the pairing model, Phys. Rev. B 77 (2008) 064503 [arXiv:0710.4865] [INSPIRE].
T. A. Sedrakyan and V. Galitski, Boundary Wess-Zumino-Novikov-Witten model from the pairing hamiltonian, Phys. Rev. B 82 (2010) 214502.
D. Fioretto, J.-S. Caux and V. Gritsev, Exact out-of-equilibrium central spin dynamics from integrability, New J. Phys. 16 (2014) 043024 [arXiv:1211.5905] [INSPIRE].
S. L. Muli, A. Poggialini and S. Bacca, Muonic lithium atoms: nuclear structure corrections to the Lamb shift, SciPost Phys. Proc. 3 (2020) 028 [arXiv:1910.14370] [INSPIRE].
Y. Shen, P. Isaac and J. Links, Ground-state energy of a Richardson-Gaudin integrable BCS model, SciPost Phys. Core 2 (2020) 001.
Y. N. Demkov and V. I. Osherov, Stationary and non-stationary problems in quantum mechanics that can be solved by means of contour integration, Zh. Exp. Teor. Fiz. 53 (1967) 1589 [Sov. Phys. JETP 26 (1968) 916].
V. N. Ostrovsky and H. Nakamura, Exact analytical solution of the N –level Landau-Zener-type bow-tie model, J. Phys. A 30 (1997) 6939.
Y. N. Demkov and V. N. Ostrovsky, Multipath interference in a multistate Landau-Zener-type model, Phys. Rev. A 61 (2000) 032705.
Y. N. Demkov and V. N. Ostrovsky, The exact solution of the multistate Landau-Zener type model: the generalized bow-tie model, J. Phys. B 34 (2001) 2419.
N. A. Sinitsyn, Multiparticle Landau-Zener problem: application to quantum dots, Phys. Rev. B 66 (2002) 205303.
A. Altland and V. Gurarie, Many body generalization of the Landau-Zener problem, Phys. Rev. Lett. 100 (2008) 063602.
A. Altland, V. Gurarie, T. Kriecherbauer and A. Polkovnikov, Nonadiabaticity and large fluctuations in a many-particle Landau-Zener problem, Phys. Rev. A 79 (2009) 042703.
A. Patra and E. A. Yuzbashyan, Quantum integrability in the multistate Landau-Zener problem, J. Phys. A 48 (2015) 245303 [arXiv:1412.4926] [INSPIRE].
E. A. Yuzbashyan, Integrable time-dependent hamiltonians, solvable Landau-Zener models and Gaudin magnets, Ann. Phys. 392 (2018) 323.
R. K. Malla and M. E. Raikh, Loss of adiabaticity with increasing tunneling gap in nonintegrable multistate Landau-Zener models, Phys. Rev. B 96 (2017) 115437.
N. A. Sinitsyn, E. A. Yuzbashyan, V. Y. Chernyak, A. Patra and C. Sun, Integrable time-dependent quantum hamiltonians, Phys. Rev. Lett. 120 (2018) 190402 [INSPIRE].
K. Nishimura and K. Takahashi, Counterdiabatic hamiltonians for multistate Landau-Zener problem, SciPost Phys. 5 (2018) 029.
V. Y. Chernyak and N. A. Sinitsyn, Integrability in the multistate Landau-Zener model with time-quadratic commuting operators, J. Phys. A 54 (2021) 115204.
M. Gaudin, Diagonalisation d’une classe d’hamiltoniens de spin (in French), J. Phys. France 37 (1976) 1087.
A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].
H. M. Babujian, Correlation function in WZNW model as a Bethe wave function for the Gaudin magnetics, Tech. Rep. YERPHI-1261-47-90-[EREVAN], Akad. Nauk Armyanskoj. Inst. Fiz., Erevan, Armenia (1990).
H. M. Babujian, Off-shell Bethe ansatz equation and N point correlators in SU(2) WZNW theory, J. Phys. A 26 (1993) 6981 [hep-th/9307062] [INSPIRE].
H. M. Babujian and R. Flume, Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik-Zamolodchikov equations, Mod. Phys. Lett. A 9 (1994) 2029 [hep-th/9310110] [INSPIRE].
V. V. Mkhitaryan, Gaudin magnet and off-mass-shell bethe wave functions, Theor. Math. Phys. 113 (1997) 1217.
B. Feigin, E. Frenkel and N. Reshetikhin, Gaudin model, Bethe ansatz and correlation functions at the critical level, Commun. Math. Phys. 166 (1994) 27 [hep-th/9402022] [INSPIRE].
E. Frenkel, Gaudin model and opers, in Workshop on infinite dimensional algebras and quantum integrable systems, P. Kulish et al. eds., Prog. Math. 237 (2004) (2004) 1 [math.QA/0407524] [INSPIRE].
E. Frenkel, Affine algebras, Langlands duality and Bethe ansatz, in Proceedings of the international congress of mathematical physics, Paris, France 1994, D. Iagolnitzer ed., International Press, (1995), p. 606 [q-alg/9506003].
A. Beilinson and V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, http://math.uchicago.edu/∼drinfeld/langlands/QuantizationHitchin.pdf.
E. Frenkel, P. Koroteev, D. S. Sage and A. M. Zeitlin, q-opers, QQ-systems, and Bethe ansatz, arXiv:2002.07344 [INSPIRE].
S. Jeong, N. Lee and N. Nekrasov, Intersecting defects in gauge theory, quantum spin chains, and Knizhnik-Zamolodchikov equations, JHEP 10 (2021) 120 [arXiv:2103.17186] [INSPIRE].
N. Nekrasov and A. Tsymbaliuk, Surface defects in gauge theory and KZ equation, arXiv:2103.12611 [INSPIRE].
I. Salom, N. Manojlović and N. Cirilo António, Generalized sl(2) Gaudin algebra and corresponding Knizhnik-Zamolodchikov equation, Nucl. Phys. B 939 (2019) 358 [INSPIRE].
I. Salom and N. Manojlović, Bethe states and Knizhnik-Zamolodchikov equations of the trigonometric Gaudin model with triangular boundary, Nucl. Phys. B 969 (2021) 115462 [INSPIRE].
D. Gaiotto, J. H. Lee, B. Vicedo and J. Wu, Kondo line defects and affine Gaudin models, JHEP 01 (2022) 175 [arXiv:2010.07325] [INSPIRE].
M. Vasilyev, A. Zabrodin and A. Zotov, Quantum-classical duality for Gaudin magnets with boundary, Nucl. Phys. B 952 (2020) 114931 [arXiv:1911.11792] [INSPIRE].
T. Skrypnyk and N. Manojlović, Twisted rational r-matrices and algebraic Bethe ansatz: application to generalized gaudin and Richardson models, Nucl. Phys. B 967 (2021) 115424.
T. Skrypnyk, Anisotropic BCS-Richardson model and algebraic Bethe ansatz, Nucl. Phys. B 975 (2022) 115679.
F. Delduc, S. Lacroix, M. Magro and B. Vicedo, Assembling integrable σ-models as affine Gaudin models, JHEP 06 (2019) 017 [arXiv:1903.00368] [INSPIRE].
I. Buric, S. Lacroix, J. A. Mann, L. Quintavalle and V. Schomerus, Gaudin models and multipoint conformal blocks. Part II. Comb channel vertices in 3D and 4D, JHEP 11 (2021) 182 [arXiv:2108.00023] [INSPIRE].
I. Buric, S. Lacroix, J. A. Mann, L. Quintavalle and V. Schomerus, Gaudin models and multipoint conformal blocks: general theory, JHEP 10 (2021) 139 [arXiv:2105.00021] [INSPIRE].
G. A. Kotousov and S. L. Lukyanov, ODE/IQFT correspondence for the generalized affine sl(2) Gaudin model, JHEP 09 (2021) 201 [arXiv:2106.01238] [INSPIRE].
M. R. Adams, J. P. Harnad and E. Previato, Isospectral Hamiltonian flows in finite and infinite dimensions. 1. Generalized Moser systems and moment maps into loop algebras, Commun. Math. Phys. 117 (1988) 451 [INSPIRE].
M. Adams, J. P. Harnad and J. Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990) 299 [INSPIRE].
J. P. Harnad, Dual isomonodromic deformations and moment maps to loop algebras, Commun. Math. Phys. 166 (1994) 337 [hep-th/9301076] [INSPIRE].
G. Felder, Y. Markov, V. Tarasov and A. Varchenko, Differential equations compatible with KZ equations, Math. Phys. Anal. Geom. 3 (2000) 139 [math.QA/0001184] [INSPIRE].
V. Tarasov and A. Varchenko, Duality for Knizhnik-Zamolodchikov and dynamical equations, math.QA/0112005.
H. M. Babujian and A. V. Kitaev, Generalized Knizhnik-Zamolodchikov equations and isomonodromy quantization of the equations integrable via the inverse scattering transform: Maxwell-Bloch system with pumping, J. Math. Phys. 39 (1998) 2499 [INSPIRE].
D. P. Zhelobenko, Compact Lie groups and their representations, Transl. Math. Mono. 40, Amer. Math. Soc., Providence, RI, U.S.A. (1983).
R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, Israel Math. Conf. Proc. 8 (1995) 1.
A. Gorsky, M. Vasilyev and A. Zotov, Dualities in quantum integrable many-body systems and integrable probabilities — I, arXiv:2109.05562 [INSPIRE].
Z. Chen, J. de Gier and M. Wheeler, Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation, Int. Math. Res. Not. 19 (2020) 5872 [arXiv:1709.06227] [INSPIRE].
F. D. M. Haldane, Nonlinear field theory of large spin Heisenberg antiferromagnets. Semiclassically quantized solitons of the one-dimensional easy axis Néel state, Phys. Rev. Lett. 50 (1983) 1153 [INSPIRE].
F. D. M. Haldane, Continuum dynamics of the 1D Heisenberg antiferromagnetic identification with the O(3) nonlinear sigma model, Phys. Lett. A 93 (1983) 464 [INSPIRE].
L. A. Takhtajan, The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins, Phys. Lett. A 87 (1982) 479 [INSPIRE].
H. M. Babujian, Exact solution of the one-dimensional isotropic Heisenberg chain with arbitrary spin S, Phys. Lett. A 90 (1982) 479 [INSPIRE].
H. M. Babujian, Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model, Nucl. Phys. B 215 (1983) 317 [INSPIRE].
I. Affleck and F. D. M. Haldane, Critical theory of quantum spin chains, Phys. Rev. B 36 (1987) 5291 [INSPIRE].
A. M. Polyakov and P. B. Wiegmann, Theory of non-Abelian Goldstone bosons, Phys. Lett. B 131 (1983) 121 [INSPIRE].
A. M. Polyakov and P. B. Wiegmann, Goldstone fields in two-dimensions with multivalued actions, Phys. Lett. B 141 (1984) 223 [INSPIRE].
M. C. Cambiaggio, A. M. F. Rivas and M. Saraceno, Integrability of the pairing Hamiltonian, Nucl. Phys. A 624 (1997) 157 [nucl-th/9708031] [INSPIRE].
L. Amico, G. Falci and R. Fazio, The BCS model and the off-shell Bethe ansatz for vertex models, J. Phys. A 34 (2001) 6425 [cond-mat/0010349] [INSPIRE].
L. Amico and A. Osterloh, Exact correlation functions of the BCS model in the canonical ensemble, Phys. Rev. Lett. 88 (2002) 127003 [cond-mat/0105141] [INSPIRE].
R. K. Malla, V. Y. Chernyak and N. A. Sinitsyn, Nonadiabatic transitions in Landau-Zener grids: integrability and semiclassical theory, Phys. Rev. B 103 (2021) 144301.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2112.12866
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Sedrakyan, T.A., Babujian, H.M. Quantum nonequilibrium dynamics from Knizhnik-Zamolodchikov equations. J. High Energ. Phys. 2022, 39 (2022). https://doi.org/10.1007/JHEP04(2022)039
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2022)039