Abstract
In this paper, we present an algorithm to construct the qT distribution at NLO accuracy to arbitrary power precision, including the assembly of suitable zero-bin subtrahends, in a mathematically well-defined way for a generic choice of rapidity-divergence regularisation prescription. In its derivation, we divide the phase space into two sectors, the interior of the integration domain as well as the integration boundary, which we include here for the first time. To demonstrate the applicability and usefulness of our algorithm, we calculate the N2LP corrections for Higgs hadroproduction for the first time. We observe that our approximate N2LP-accurate qT spectra replicate the asymptotic behaviour of the full QCD calculation to a much better degree than the previously available results, both within the qT → 0 limit and in the large-qT domain for all the involved partonic processes. While playing a minor role at larger transverse momenta, we show that the newly incorporated boundary contribution plays a vital role in the qT → 0 limit, where any subleading power accuracy would be lost without them. In particular, our N2LP-accurate qT expansion can approximate the exact qT distribution up to qT ≈ 30 GeV at the percent level for rapidities |YH| ≲ 3.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Measurement of the transverse momentum and \({\phi }_{\eta }^{*}\) distributions of Drell-Yan lepton pairs in proton-proton collisions at \(\sqrt{s}\) = 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
ATLAS collaboration, Measurement of the W-boson mass in pp collisions at \(\sqrt{s}\) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 110 [Erratum ibid. 78 (2018) 898] [arXiv:1701.07240] [INSPIRE].
ATLAS collaboration, Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in proton-proton collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 616 [arXiv:1912.02844] [INSPIRE].
ATLAS collaboration, A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at \(\sqrt{s}\) = 8 TeV, arXiv:2309.09318 [INSPIRE].
CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
CMS collaboration, Measurement of the weak mixing angle using the forward-backward asymmetry of Drell-Yan events in pp collisions at 8 TeV, Eur. Phys. J. C 78 (2018) 701 [arXiv:1806.00863] [INSPIRE].
CMS collaboration, Measurement of the differential Drell-Yan cross section in proton-proton collisions at \(\sqrt{s}\) = 13 TeV, JHEP 12 (2019) 059 [arXiv:1812.10529] [INSPIRE].
CMS collaboration, Measurements of differential Z boson production cross sections in proton-proton collisions at \(\sqrt{s}\) = 13 TeV, JHEP 12 (2019) 061 [arXiv:1909.04133] [INSPIRE].
CMS collaboration, Measurements of the W boson rapidity, helicity, double-differential cross sections, and charge asymmetry in pp collisions at \(\sqrt{s}\) = 13 TeV, Phys. Rev. D 102 (2020) 092012 [arXiv:2008.04174] [INSPIRE].
LHCb collaboration, Measurement of the W boson mass, JHEP 01 (2022) 036 [arXiv:2109.01113] [INSPIRE].
D0 collaboration, Measurement of the W Boson Mass with the D0 Detector, Phys. Rev. Lett. 108 (2012) 151804 [arXiv:1203.0293] [INSPIRE].
CDF collaboration, Precise measurement of the W-boson mass with the CDF II detector, Phys. Rev. Lett. 108 (2012) 151803 [arXiv:1203.0275] [INSPIRE].
CDF and D0 collaborations, Combination of CDF and D0 W-Boson Mass Measurements, Phys. Rev. D 88 (2013) 052018 [arXiv:1307.7627] [INSPIRE].
CDF collaboration, High-precision measurement of the W boson mass with the CDF II detector, Science 376 (2022) 170 [INSPIRE].
ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \(\sqrt{s}\) = 8 TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
CMS collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \(\sqrt{s}\) = 7 and 8 TeV, JHEP 04 (2016) 005 [arXiv:1512.08377] [INSPIRE].
ATLAS collaboration, Measurement of inclusive and differential cross sections in the H → ZZ∗ → 4ℓ decay channel in pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector, JHEP 10 (2017) 132 [arXiv:1708.02810] [INSPIRE].
CMS collaboration, Measurement and interpretation of differential cross sections for Higgs boson production at \(\sqrt{s}\) = 13 TeV, Phys. Lett. B 792 (2019) 369 [arXiv:1812.06504] [INSPIRE].
ATLAS collaboration, Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4ℓ decay channel at \(\sqrt{s}\) = 13 TeV, Eur. Phys. J. C 80 (2020) 942 [arXiv:2004.03969] [INSPIRE].
ATLAS collaboration, Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with pp collisions at \(\sqrt{s}\) = 13 TeV with the ATLAS detector, JHEP 08 (2022) 027 [arXiv:2202.00487] [INSPIRE].
ATLAS collaboration, Measurement of the total and differential Higgs boson production cross-sections at \(\sqrt{s}\) = 13 TeV with the ATLAS detector by combining the H → ZZ∗ → 4ℓ and H → γγ decay channels, JHEP 05 (2023) 028 [arXiv:2207.08615] [INSPIRE].
ATLAS collaboration, Measurements of differential cross sections of Higgs boson production through gluon fusion in the H → WW∗ → eνμν final state at \(\sqrt{s}\) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 83 (2023) 774 [arXiv:2301.06822] [INSPIRE].
ATLAS collaboration, Fiducial and differential cross-section measurements for the vector-boson-fusion production of the Higgs boson in the H → WW∗ → eνμν decay channel at 13 TeV with the ATLAS detector, Phys. Rev. D 108 (2023) 072003 [arXiv:2304.03053] [INSPIRE].
CMS collaboration, Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at \(\sqrt{s}\) = 13 TeV, JHEP 08 (2023) 040 [arXiv:2305.07532] [INSPIRE].
K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \(O\left({\alpha }_{s}^{2}\right)\), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].
S. Catani et al., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].
S. Camarda et al., DYTurbo: Fast predictions for Drell-Yan processes, Eur. Phys. J. C 80 (2020) 251 [Erratum ibid. 80 (2020) 440] [arXiv:1910.07049] [INSPIRE].
C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan Cross Section to Third Order in the Strong Coupling Constant, Phys. Rev. Lett. 125 (2020) 172001 [arXiv:2001.07717] [INSPIRE].
C. Duhr and B. Mistlberger, Lepton-pair production at hadron colliders at N3LO in QCD, JHEP 03 (2022) 116 [arXiv:2111.10379] [INSPIRE].
X. Chen et al., Dilepton Rapidity Distribution in Drell-Yan Production to Third Order in QCD, Phys. Rev. Lett. 128 (2022) 052001 [arXiv:2107.09085] [INSPIRE].
X. Chen et al., Third-Order Fiducial Predictions for Drell-Yan Production at the LHC, Phys. Rev. Lett. 128 (2022) 252001 [arXiv:2203.01565] [INSPIRE].
T. Neumann and J. Campbell, Fiducial Drell-Yan production at the LHC improved by transverse-momentum resummation at N 4LLp+N 3LO, Phys. Rev. D 107 (2023) L011506 [arXiv:2207.07056] [INSPIRE].
J. Baglio, C. Duhr, B. Mistlberger and R. Szafron, Inclusive production cross sections at N3LO, JHEP 12 (2022) 066 [arXiv:2209.06138] [INSPIRE].
A. Gehrmann-De Ridder et al., Precision phenomenology with fiducial cross sections in the triple-differential Drell-Yan process, JHEP 05 (2023) 002 [arXiv:2301.11827] [INSPIRE].
S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].
A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].
M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].
C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].
C. Anastasiou et al., Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].
B. Mistlberger, Higgs boson production at hadron colliders at N 3LO in QCD, JHEP 05 (2018) 028 [arXiv:1802.00833] [INSPIRE].
X. Chen, T. Gehrmann, E.W.N. Glover and M. Jaquier, Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B 740 (2015) 147 [arXiv:1408.5325] [INSPIRE].
R. Boughezal et al., Higgs boson production in association with a jet at NNLO using jettiness subtraction, Phys. Lett. B 748 (2015) 5 [arXiv:1505.03893] [INSPIRE].
R. Boughezal et al., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett. 115 (2015) 082003 [arXiv:1504.07922] [INSPIRE].
X. Chen et al., NNLO QCD corrections to Higgs boson production at large transverse momentum, JHEP 10 (2016) 066 [arXiv:1607.08817] [INSPIRE].
F. Caola, K. Melnikov and M. Schulze, Fiducial cross sections for Higgs boson production in association with a jet at next-to-next-to-leading order in QCD, Phys. Rev. D 92 (2015) 074032 [arXiv:1508.02684] [INSPIRE].
L. Cieri et al., Higgs boson production at the LHC using the qT subtraction formalism at N 3LO QCD, JHEP 02 (2019) 096 [arXiv:1807.11501] [INSPIRE].
G. Billis et al., Higgs pT Spectrum and Total Cross Section with Fiducial Cuts at Third Resummed and Fixed Order in QCD, Phys. Rev. Lett. 127 (2021) 072001 [arXiv:2102.08039] [INSPIRE].
X. Chen et al., Top-quark mass effects in H+jet and H + 2 jets production, JHEP 03 (2022) 096 [arXiv:2110.06953] [INSPIRE].
X. Chen et al., Fully Differential Higgs Boson Production to Third Order in QCD, Phys. Rev. Lett. 127 (2021) 072002 [arXiv:2102.07607] [INSPIRE].
P. Cal, R. von Kuk, M.A. Lim and F.J. Tackmann, The qT spectrum for Higgs production via heavy quark annihilation at N3LL′+aN3LO, arXiv:2306.16458 [INSPIRE].
Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].
S. Dittmaier, A. Huss and C. Schwinn, Dominant mixed QCD-electroweak O(αsα) corrections to Drell-Yan processes in the resonance region, Nucl. Phys. B 904 (2016) 216 [arXiv:1511.08016] [INSPIRE].
R. Bonciani et al., NNLO QCD×EW corrections to Z production in the \(q\overline{q }\) channel, Phys. Rev. D 101 (2020) 031301 [arXiv:1911.06200] [INSPIRE].
S. Dittmaier, T. Schmidt and J. Schwarz, Mixed NNLO QCD× electroweak corrections of \(\mathcal{O}\left({N}_{f}{\alpha }_{s}\alpha \right)\) to single-W/Z production at the LHC, JHEP 12 (2020) 201 [arXiv:2009.02229] [INSPIRE].
R. Bonciani et al., Mixed Strong-Electroweak Corrections to the Drell-Yan Process, Phys. Rev. Lett. 128 (2022) 012002 [arXiv:2106.11953] [INSPIRE].
T. Armadillo et al., Two-loop mixed QCD-EW corrections to neutral current Drell-Yan, JHEP 05 (2022) 072 [arXiv:2201.01754] [INSPIRE].
F. Buccioni et al., Mixed QCD-electroweak corrections to dilepton production at the LHC in the high invariant mass region, JHEP 06 (2022) 022 [arXiv:2203.11237] [INSPIRE].
S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301] [INSPIRE].
C. Anastasiou, R. Boughezal and F. Petriello, Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion, JHEP 04 (2009) 003 [arXiv:0811.3458] [INSPIRE].
J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. 213 (1983) 545] [INSPIRE].
J.C. Collins and D.E. Soper, Back-To-Back Jets: Fourier Transform from B to K-Transverse, Nucl. Phys. B 197 (1982) 446 [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].
G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Higgs boson production at the LHC: Transverse-momentum resummation and rapidity dependence, Nucl. Phys. B 791 (2008) 1 [arXiv:0705.3887] [INSPIRE].
M.A. Ebert and F.J. Tackmann, Resummation of Transverse Momentum Distributions in Distribution Space, JHEP 02 (2017) 110 [arXiv:1611.08610] [INSPIRE].
P.F. Monni, E. Re and P. Torrielli, Higgs Transverse-Momentum Resummation in Direct Space, Phys. Rev. Lett. 116 (2016) 242001 [arXiv:1604.02191] [INSPIRE].
W. Bizoń et al., Momentum-space resummation for transverse observables and the Higgs p⊥ at N3LL+NNLO, JHEP 02 (2018) 108 [arXiv:1705.09127] [INSPIRE].
W. Bizoń et al., The transverse momentum spectrum of weak gauge bosons at N 3LL + NNLO, Eur. Phys. J. C 79 (2019) 868 [arXiv:1905.05171] [INSPIRE].
W. Bizoń et al., Fiducial distributions in Higgs and Drell-Yan production at N 3LL+NNLO, JHEP 12 (2018) 132 [arXiv:1805.05916] [INSPIRE].
T. Becher and M. Neubert, Drell-Yan Production at Small qT, Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low qT And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].
T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].
J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].
J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].
Y. Li, D. Neill and H.X. Zhu, An exponential regulator for rapidity divergences, Nucl. Phys. B 960 (2020) 115193 [arXiv:1604.00392] [INSPIRE].
Y. Li and H.X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004 [arXiv:1604.01404] [INSPIRE].
G. Bozzi et al., Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].
T. Becher, M. Neubert and D. Wilhelm, Electroweak Gauge-Boson Production at Small qT: Infrared Safety from the Collinear Anomaly, JHEP 02 (2012) 124 [arXiv:1109.6027] [INSPIRE].
A. Banfi, M. Dasgupta and S. Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders, Phys. Lett. B 701 (2011) 75 [arXiv:1102.3594] [INSPIRE].
A. Banfi, M. Dasgupta, S. Marzani and L. Tomlinson, Probing the low transverse momentum domain of Z production with novel variables, JHEP 01 (2012) 044 [arXiv:1110.4009] [INSPIRE].
A. Banfi, M. Dasgupta, S. Marzani and L. Tomlinson, Predictions for Drell-Yan ϕ∗ and QT observables at the LHC, Phys. Lett. B 715 (2012) 152 [arXiv:1205.4760] [INSPIRE].
S. Catani, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay, JHEP 12 (2015) 047 [arXiv:1507.06937] [INSPIRE].
I. Scimemi and A. Vladimirov, Analysis of vector boson production within TMD factorization, Eur. Phys. J. C 78 (2018) 89 [arXiv:1706.01473] [INSPIRE].
A. Bacchetta et al., Transverse-momentum-dependent parton distributions up to N 3LL from Drell-Yan data, JHEP 07 (2020) 117 [arXiv:1912.07550] [INSPIRE].
T. Becher and T. Neumann, Fiducial qT resummation of color-singlet processes at N3LL+NNLO, JHEP 03 (2021) 199 [arXiv:2009.11437] [INSPIRE].
M.A. Ebert, J.K.L. Michel, I.W. Stewart and F.J. Tackmann, Drell-Yan qT resummation of fiducial power corrections at N3LL, JHEP 04 (2021) 102 [arXiv:2006.11382] [INSPIRE].
E. Re, L. Rottoli and P. Torrielli, Fiducial Higgs and Drell-Yan distributions at N3LL′+NNLO with RadISH, arXiv:2104.07509 [https://doi.org/10.1007/JHEP09(2021)108] [INSPIRE].
S. Camarda, L. Cieri and G. Ferrera, Drell-Yan lepton-pair production: qT resummation at N3LL accuracy and fiducial cross sections at N3LO, Phys. Rev. D 104 (2021) L111503 [arXiv:2103.04974] [INSPIRE].
W.-L. Ju and M. Schönherr, The qT and ∆ϕ spectra in W and Z production at the LHC at N 3LL’+N 2LO, JHEP 10 (2021) 088 [arXiv:2106.11260] [INSPIRE].
S. Camarda, L. Cieri and G. Ferrera, Drell-Yan lepton-pair production: qT resummation at N4LL accuracy, Phys. Lett. B 845 (2023) 138125 [arXiv:2303.12781] [INSPIRE].
V. Moos, I. Scimemi, A. Vladimirov and P. Zurita, Extraction of unpolarized transverse momentum distributions from fit of Drell-Yan data at N 4LL, arXiv:2305.07473 [INSPIRE].
A. Belyaev, P.M. Nadolsky and C.-P. Yuan, Transverse momentum resummation for Higgs boson produced via \(b\overline{b }\) fusion at hadron colliders, JHEP 04 (2006) 004 [hep-ph/0509100] [INSPIRE].
T. Becher, M. Neubert and D. Wilhelm, Higgs-Boson Production at Small Transverse Momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].
D. Neill, I.Z. Rothstein and V. Vaidya, The Higgs Transverse Momentum Distribution at NNLL and its Theoretical Errors, JHEP 12 (2015) 097 [arXiv:1503.00005] [INSPIRE].
X. Chen et al., Precise QCD Description of the Higgs Boson Transverse Momentum Spectrum, Phys. Lett. B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].
D. Gutierrez-Reyes, S. Leal-Gomez, I. Scimemi and A. Vladimirov, Linearly polarized gluons at next-to-next-to leading order and the Higgs transverse momentum distribution, JHEP 11 (2019) 121 [arXiv:1907.03780] [INSPIRE].
R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark annihilation: Transverse momentum distribution at NNLO+NNLL, Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].
I. Balitsky and A. Tarasov, Power corrections to TMD factorization for Z-boson production, JHEP 05 (2018) 150 [arXiv:1712.09389] [INSPIRE].
I. Balitsky, Gauge-invariant TMD factorization for Drell-Yan hadronic tensor at small x, JHEP 05 (2021) 046 [arXiv:2012.01588] [INSPIRE].
I. Balitsky, Drell-Yan angular lepton distributions at small × from TMD factorization, JHEP 09 (2021) 022 [arXiv:2105.13391] [INSPIRE].
I. Balitsky and A. Tarasov, Higher-twist corrections to gluon TMD factorization, JHEP 07 (2017) 095 [arXiv:1706.01415] [INSPIRE].
A. Vladimirov, V. Moos and I. Scimemi, Transverse momentum dependent operator expansion at next-to-leading power, JHEP 01 (2022) 110 [arXiv:2109.09771] [INSPIRE].
M.A. Ebert, A. Gao and I.W. Stewart, Factorization for azimuthal asymmetries in SIDIS at next-to-leading power, JHEP 06 (2022) 007 [Erratum ibid. 07 (2023) 096] [arXiv:2112.07680] [INSPIRE].
L. Gamberg et al., Transverse-momentum-dependent factorization at next-to-leading power, arXiv:2211.13209 [INSPIRE].
S. Rodini and A. Vladimirov, Factorization for quasi-TMD distributions of sub-leading power, JHEP 09 (2023) 117 [arXiv:2211.04494] [INSPIRE].
S. Rodini and A. Vladimirov, Transverse momentum dependent factorization for SIDIS at next-to-leading power, arXiv:2306.09495 [INSPIRE].
A. Vladimirov, Kinematic power corrections in TMD factorization theorem, JHEP 12 (2023) 008 [arXiv:2307.13054] [INSPIRE].
S. Rodini, A.C. Alvaro and B. Pasquini, Collinear matching for next-to-leading power transverse-momentum distributions, Phys. Lett. B 845 (2023) 138163 [arXiv:2306.15052] [INSPIRE].
M.A. Ebert et al., Subleading power rapidity divergences and power corrections for qT , JHEP 04 (2019) 123 [arXiv:1812.08189] [INSPIRE].
M. Inglis-Whalen, M. Luke, J. Roy and A. Spourdalakis, Factorization of power corrections in the Drell-Yan process in EFT, Phys. Rev. D 104 (2021) 076018 [arXiv:2105.09277] [INSPIRE].
M. Inglis-Whalen, Power Corrections and Rapidity Logarithms in Soft-collinear Effective Theory, Ph.D. thesis, Toronto University, Toronto, Ontario M5S 1A7, Canada (2022) [INSPIRE].
C. Oleari and M. Rocco, Power corrections in a transverse-momentum cut for vector-boson production at NNLO: the qg-initiated real-virtual contribution, Eur. Phys. J. C 81 (2021) 183 [arXiv:2012.10538] [INSPIRE].
L. Cieri, C. Oleari and M. Rocco, Higher-order power corrections in a transverse-momentum cut for colour-singlet production at NLO, Eur. Phys. J. C 79 (2019) 852 [arXiv:1906.09044] [INSPIRE].
S. Camarda, L. Cieri and G. Ferrera, Fiducial perturbative power corrections within the qT subtraction formalism, Eur. Phys. J. C 82 (2022) 575 [arXiv:2111.14509] [INSPIRE].
M.A. Ebert and F.J. Tackmann, Impact of isolation and fiducial cuts on qT and N-jettiness subtractions, JHEP 03 (2020) 158 [arXiv:1911.08486] [INSPIRE].
Z.L. Liu, M. Neubert, M. Schnubel and X. Wang, Factorization at next-to-leading power and endpoint divergences in gg → h production, JHEP 06 (2023) 183 [arXiv:2212.10447] [INSPIRE].
Z.L. Liu, B. Mecaj, M. Neubert and X. Wang, Factorization at subleading power, Sudakov resummation, and endpoint divergences in soft-collinear effective theory, Phys. Rev. D 104 (2021) 014004 [arXiv:2009.04456] [INSPIRE].
Z.L. Liu et al., Renormalization and Scale Evolution of the Soft-Quark Soft Function, JHEP 07 (2020) 104 [arXiv:2005.03013] [INSPIRE].
Z.L. Liu and M. Neubert, Two-Loop Radiative Jet Function for Exclusive B-Meson and Higgs Decays, JHEP 06 (2020) 060 [arXiv:2003.03393] [INSPIRE].
Z.L. Liu and M. Neubert, Factorization at subleading power and endpoint-divergent convolutions in h → γγ decay, JHEP 04 (2020) 033 [arXiv:1912.08818] [INSPIRE].
T. Liu, S. Modi and A.A. Penin, Higgs boson production and quark scattering amplitudes at high energy through the next-to-next-to-leading power in quark mass, JHEP 02 (2022) 170 [arXiv:2111.01820] [INSPIRE].
T. Liu and A. Penin, High-Energy Limit of Mass-Suppressed Amplitudes in Gauge Theories, JHEP 11 (2018) 158 [arXiv:1809.04950] [INSPIRE].
T. Liu and A.A. Penin, High-Energy Limit of QCD beyond the Sudakov Approximation, Phys. Rev. Lett. 119 (2017) 262001 [arXiv:1709.01092] [INSPIRE].
L. Buonocore, M. Grazzini, F. Guadagni and L. Rottoli, Subleading power corrections for event shape variables in e+e− annihilation, arXiv:2311.12768 [INSPIRE].
N. Agarwal et al., Next-to-leading power corrections to the event shape variables, arXiv:2306.17601 [INSPIRE].
M. van Beekveld, W. Beenakker, E. Laenen and C.D. White, Next-to-leading power threshold effects for inclusive and exclusive processes with final state jets, JHEP 03 (2020) 106 [arXiv:1905.08741] [INSPIRE].
H. Chen, X. Zhou and H.X. Zhu, Power corrections to energy flow correlations from large spin perturbation, JHEP 10 (2023) 132 [arXiv:2301.03616] [INSPIRE].
M.A. Ebert et al., Power Corrections for N-Jettiness Subtractions at(αs), JHEP 12 (2018) 084 [arXiv:1807.10764] [INSPIRE].
I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, First Subleading Power Resummation for Event Shapes, JHEP 08 (2018) 013 [arXiv:1804.04665] [INSPIRE].
I. Moult et al., N -jettiness subtractions for gg → H at subleading power, Phys. Rev. D 97 (2018) 014013 [arXiv:1710.03227] [INSPIRE].
I. Moult et al., Subleading Power Corrections for N-Jettiness Subtractions, Phys. Rev. D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].
S. Pal and S. Seth, On H+jet production at NLP accuracy, arXiv:2309.08343 [INSPIRE].
R. van Bijleveld, E. Laenen, L. Vernazza and G. Wang, Next-to-leading power resummed rapidity distributions near threshold for Drell-Yan and diphoton production, JHEP 10 (2023) 126 [arXiv:2308.00230] [INSPIRE].
M. van Beekveld, E. Laenen, J. Sinninghe Damsté and L. Vernazza, Next-to-leading power threshold corrections for finite order and resummed colour-singlet cross sections, JHEP 05 (2021) 114 [arXiv:2101.07270] [INSPIRE].
E. Laenen et al., Towards all-order factorization of QED amplitudes at next-to-leading power, Phys. Rev. D 103 (2021) 034022 [arXiv:2008.01736] [INSPIRE].
M. van Beekveld et al., Next-to-leading power threshold effects for resummed prompt photon production, Phys. Rev. D 100 (2019) 056009 [arXiv:1905.11771] [INSPIRE].
D. Bonocore et al., Non-abelian factorisation for next-to-leading-power threshold logarithms, JHEP 12 (2016) 121 [arXiv:1610.06842] [INSPIRE].
D. Bonocore et al., A factorization approach to next-to-leading-power threshold logarithms, JHEP 06 (2015) 008 [arXiv:1503.05156] [INSPIRE].
D. Bonocore et al., The method of regions and next-to-soft corrections in Drell-Yan production, Phys. Lett. B 742 (2015) 375 [arXiv:1410.6406] [INSPIRE].
E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-Eikonal Corrections to Soft Gluon Radiation: A Diagrammatic Approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].
E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].
E. Laenen, L. Magnea and G. Stavenga, On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections, Phys. Lett. B 669 (2008) 173 [arXiv:0807.4412] [INSPIRE].
A. Broggio, S. Jaskiewicz and L. Vernazza, Threshold factorization of the Drell-Yan quark-gluon channel and two-loop soft function at next-to-leading power, JHEP 12 (2023) 028 [arXiv:2306.06037] [INSPIRE].
M. Beneke et al., Leading-logarithmic threshold resummation of the Drell-Yan process at next-to-leading power, JHEP 03 (2019) 043 [arXiv:1809.10631] [INSPIRE].
M. Beneke et al., Next-to-leading power endpoint factorization and resummation for off-diagonal “gluon” thrust, JHEP 07 (2022) 144 [arXiv:2205.04479] [INSPIRE].
M. Beneke, A. Broggio, S. Jaskiewicz and L. Vernazza, Threshold factorization of the Drell-Yan process at next-to-leading power, JHEP 07 (2020) 078 [arXiv:1912.01585] [INSPIRE].
M. Beneke et al., Leading-logarithmic threshold resummation of Higgs production in gluon fusion at next-to-leading power, JHEP 01 (2020) 094 [arXiv:1910.12685] [INSPIRE].
D. Bonocore and A. Kulesza, Soft photon bremsstrahlung at next-to-leading power, Phys. Lett. B 833 (2022) 137325 [arXiv:2112.08329] [INSPIRE].
A. Bhattacharya, M.C. Kumar, P. Mathews and V. Ravindran, Next-to-soft-virtual resummed prediction for pseudoscalar Higgs boson production at \(NNLO+\overline{NNLL }\), Phys. Rev. D 105 (2022) 116015 [arXiv:2112.02341] [INSPIRE].
A. A H et al., Next-to-soft corrections for Drell-Yan and Higgs boson rapidity distributions beyond N 3LO, Phys. Rev. D 103 (2021) L111502 [arXiv:2010.00079] [INSPIRE].
N. Bahjat-Abbas et al., Diagrammatic resummation of leading-logarithmic threshold effects at next-to-leading power, JHEP 11 (2019) 002 [arXiv:1905.13710] [INSPIRE].
R. Balsach, D. Bonocore and A. Kulesza, Soft-photon spectra and the LBK theorem, arXiv:2312.11386 [INSPIRE].
T. Engel, Multiple soft-photon emission at next-to-leading power to all orders, JHEP 03 (2024) 004 [arXiv:2311.17612] [INSPIRE].
T. Engel, The LBK theorem to all orders, JHEP 07 (2023) 177 [arXiv:2304.11689] [INSPIRE].
J.C. Collins, Proof of factorization for diffractive hard scattering, Phys. Rev. D 57 (1998) 3051 [Erratum ibid. 61 (2000) 019902] [hep-ph/9709499] [INSPIRE].
J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].
J.R. Gaunt, Glauber Gluons and Multiple Parton Interactions, JHEP 07 (2014) 110 [arXiv:1405.2080] [INSPIRE].
M.D. Schwartz, K. Yan and H.X. Zhu, Factorization Violation and Scale Invariance, Phys. Rev. D 97 (2018) 096017 [arXiv:1801.01138] [INSPIRE].
A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].
A. Idilbi and T. Mehen, Demonstration of the equivalence of soft and zero-bin subtractions, Phys. Rev. D 76 (2007) 094015 [arXiv:0707.1101] [INSPIRE].
A. Idilbi and T. Mehen, On the equivalence of soft and zero-bin subtractions, Phys. Rev. D 75 (2007) 114017 [hep-ph/0702022] [INSPIRE].
J.-Y. Chiu et al., Soft-Collinear Factorization and Zero-Bin Subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].
X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for spin-dependent cross sections in DIS and Drell-Yan processes at low transverse momentum, Phys. Lett. B 597 (2004) 299 [hep-ph/0405085] [INSPIRE].
X.-D. Ji, J.-P. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
R. Goerke and M. Luke, Power Counting and Modes in SCET, JHEP 02 (2018) 147 [arXiv:1711.09136] [INSPIRE].
M. Inglis-Whalen, M. Luke and A. Spourdalakis, Rapidity logarithms in SCET without modes, Nucl. Phys. A 1014 (2021) 122260 [arXiv:2005.13063] [INSPIRE].
M.G. Echevarria, I. Scimemi and A. Vladimirov, Universal transverse momentum dependent soft function at NNLO, Phys. Rev. D 93 (2016) 054004 [arXiv:1511.05590] [INSPIRE].
M.G. Echevarria, I. Scimemi and A. Vladimirov, Transverse momentum dependent fragmentation function at next-to-next-to-leading order, Phys. Rev. D 93 (2016) 011502 [Erratum ibid. 94 (2016) 099904] [arXiv:1509.06392] [INSPIRE].
M.-X. Luo et al., Transverse Parton Distribution and Fragmentation Functions at NNLO: the Quark Case, JHEP 10 (2019) 083 [arXiv:1908.03831] [INSPIRE].
M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Transverse Parton Distribution and Fragmentation Functions at NNLO: the Gluon Case, JHEP 01 (2020) 040 [arXiv:1909.13820] [INSPIRE].
M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Quark Transverse Parton Distribution at the Next-to-Next-to-Next-to-Leading Order, Phys. Rev. Lett. 124 (2020) 092001 [arXiv:1912.05778] [INSPIRE].
M.-X. Luo, T.-Z. Yang, H.X. Zhu and Y.J. Zhu, Unpolarized quark and gluon TMD PDFs and FFs at N3LO, JHEP 06 (2021) 115 [arXiv:2012.03256] [INSPIRE].
B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].
I. Moult, G. Vita and K. Yan, Subleading power resummation of rapidity logarithms: the energy-energy correlator in \(\mathcal{N}\) = 4 SYM, JHEP 07 (2020) 005 [arXiv:1912.02188] [INSPIRE].
M.G. Echevarria, I. Scimemi and A. Vladimirov, Unpolarized Transverse Momentum Dependent Parton Distribution and Fragmentation Functions at next-to-next-to-leading order, JHEP 09 (2016) 004 [arXiv:1604.07869] [INSPIRE].
J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
H. Kluberg-Stern and J.B. Zuber, Ward Identities and Some Clues to the Renormalization of Gauge Invariant Operators, Phys. Rev. D 12 (1975) 467 [INSPIRE].
N.K. Nielsen, Gauge Invariance and Broken Conformal Symmetry, Nucl. Phys. B 97 (1975) 527 [INSPIRE].
F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].
N.K. Nielsen, The Energy Momentum Tensor in a Nonabelian Quark Gluon Theory, Nucl. Phys. B 120 (1977) 212 [INSPIRE].
T. Inami, T. Kubota and Y. Okada, Effective Gauge Theory and the Effect of Heavy Quarks in Higgs Boson Decays, Z. Phys. C 18 (1983) 69 [INSPIRE].
V.P. Spiridonov, Anomalous Dimension of \({G}_{\mu \nu }^{2}\) and β Function, [INSPIRE].
K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O\left({\alpha }_{s}^{3}\right)\) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
A. Djouadi, J. Kalinowski and P.M. Zerwas, Higgs radiation off top quarks in high-energy e+e− colliders, Z. Phys. C 54 (1992) 255 [INSPIRE].
K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \({\alpha }_{s}^{4}\), Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].
K.G. Chetyrkin, J.H. Kühn and C. Sturm, QCD decoupling at four loops, Nucl. Phys. B 744 (2006) 121 [hep-ph/0512060] [INSPIRE].
Y. Schroder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP 01 (2006) 051 [hep-ph/0512058] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].
V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].
C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].
S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
S. Catani et al., Vector boson production at hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195 [arXiv:1209.0158] [INSPIRE].
S. Catani and P.K. Dhani, Collinear functions for QCD resummations, JHEP 03 (2023) 200 [arXiv:2208.05840] [INSPIRE].
S. Catani and M. Grazzini, Higgs Boson Production at Hadron Colliders: Hard-Collinear Coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. 72 (2012) 2132] [arXiv:1106.4652] [INSPIRE].
M.A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at N 3LO, JHEP 09 (2020) 146 [arXiv:2006.05329] [INSPIRE].
T. Gehrmann, T. Lubbert and L.L. Yang, Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003 [arXiv:1209.0682] [INSPIRE].
T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451] [INSPIRE].
T. Gehrmann and D. Kara, The \(Hb\overline{b }\) form factor to three loops in QCD, JHEP 09 (2014) 174 [arXiv:1407.8114] [INSPIRE].
T. Gehrmann et al., Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].
P.A. Baikov et al., Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].
T. Gehrmann, T. Huber and D. Maitre, Two-loop quark and gluon form-factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].
R.V. Harlander, Virtual corrections to gg → H to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [INSPIRE].
C. Duhr, B. Mistlberger and G. Vita, Four-Loop Rapidity Anomalous Dimension and Event Shapes to Fourth Logarithmic Order, Phys. Rev. Lett. 129 (2022) 162001 [arXiv:2205.02242] [INSPIRE].
I. Moult, H.X. Zhu and Y.J. Zhu, The four loop QCD rapidity anomalous dimension, JHEP 08 (2022) 280 [arXiv:2205.02249] [INSPIRE].
R.N. Lee et al., Quark and Gluon Form Factors in Four-Loop QCD, Phys. Rev. Lett. 128 (2022) 212002 [arXiv:2202.04660] [INSPIRE].
A. Chakraborty et al., Hbb vertex at four loops and hard matching coefficients in SCET for various currents, Phys. Rev. D 106 (2022) 074009 [arXiv:2204.02422] [INSPIRE].
M. Bonvini, Resummation of soft and hard gluon radiation in perturbative QCD, Ph.D. thesis, Genoa University, I-16146 Genova, Genoa, Italy (2012) [arXiv:1212.0480] [INSPIRE].
M. Bonvini and S. Marzani, Resummed Higgs cross section at N 3LL, JHEP 09 (2014) 007 [arXiv:1405.3654] [INSPIRE].
M. Diehl, R. Nagar and F.J. Tackmann, ChiliPDF: Chebyshev interpolation for parton distributions, Eur. Phys. J. C 82 (2022) 257 [arXiv:2112.09703] [INSPIRE].
M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
V.A. Smirnov and E.R. Rakhmetov, The strategy of regions for asymptotic expansion of two loop vertex Feynman diagrams, Theor. Math. Phys. 120 (1999) 870 [hep-ph/9812529] [INSPIRE].
V.A. Smirnov, Problems of the strategy of regions, Phys. Lett. B 465 (1999) 226 [hep-ph/9907471] [INSPIRE].
V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].
I. Balitsky and G.A. Chirilli, NLO evolution of color dipoles in N = 4 SYM, Nucl. Phys. B 822 (2009) 45 [arXiv:0903.5326] [INSPIRE].
I. Balitsky and G.A. Chirilli, Rapidity evolution of Wilson lines at the next-to-leading order, Phys. Rev. D 88 (2013) 111501 [arXiv:1309.7644] [INSPIRE].
I. Balitsky and G.A. Chirilli, Conformal invariance of transverse-momentum dependent parton distributions rapidity evolution, Phys. Rev. D 100 (2019) 051504 [arXiv:1905.09144] [INSPIRE].
I. Balitsky and G.A. Chirilli, Rapidity evolution of TMDs with running coupling, Phys. Rev. D 106 (2022) 034007 [arXiv:2205.03119] [INSPIRE].
I. Balitsky, Rapidity-only TMD factorization at one loop, JHEP 03 (2023) 029 [arXiv:2301.01717] [INSPIRE].
F. De Fazio and M. Neubert, \(B\to {X}_{u}l{\overline{\nu }}_{l}\) lepton decay distributions to order alpha(s), JHEP 06 (1999) 017 [hep-ph/9905351] [INSPIRE].
S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in B → Xsγ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].
C.W. Bauer et al., Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with nonAbelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].
C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].
B.O. Lange and M. Neubert, Factorization and the soft overlap contribution to heavy to light form-factors, Nucl. Phys. B 690 (2004) 249 [hep-ph/0311345] [INSPIRE].
M. Beneke and T. Feldmann, Factorization of heavy to light form-factors in soft collinear effective theory, Nucl. Phys. B 685 (2004) 249 [hep-ph/0311335] [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
S. Bailey et al., Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs, Eur. Phys. J. C 81 (2021) 341 [arXiv:2012.04684] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
E. Bothmann et al., Accelerating LHC event generation with simplified pilot runs and fast PDFs, Eur. Phys. J. C 82 (2022) 1128 [arXiv:2209.00843] [INSPIRE].
T. Gleisberg et al., SHERPA 1. alpha: A proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].
T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].
A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].
C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].
Acknowledgments
MS is funded by the Royal Society through a University Research Fellowship (URF\R1\180549 and URF\R\231031) and a Royal Society Enhancement Award (RGF\EA\181033, CEC19\100349, and RF\ERE\210397).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2312.14911
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ferrera, G., Ju, WL. & Schönherr, M. Zero-bin subtraction and the qT spectrum beyond leading power. J. High Energ. Phys. 2024, 5 (2024). https://doi.org/10.1007/JHEP04(2024)005
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2024)005