Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dark matter search at a linear collider: effective operator approach

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Experiments at electron-positron colliders can search for dark matter particle pair-production in association with a photon. We estimate the sensitivity of this search at the proposed International Linear Collider (ILC), under a variety of run scenarios. We employ the effective operator formalism to provide a quasi-model-independent theoretical description of the signal, and present the reach of the ILC in terms of the scale Λ suppressing the dark matter-electron coupling operator. We find that at the 250 GeV center-of-mass energy, the ILC can probe Λ up to 650–900 GeV, approximately a factor of 2 above the best current bounds from LEP-2. With 1 TeV energy and polarized beams, the reach can be extended to 2–3.5TeV. The ILC can discover this signature even if annihilation to electrons provides only a small fraction of the total dark matter annihilation rate in the early universe. We also argue that large regions of parameter space allowed by current LHC and direct detection bounds will be accessible at the ILC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Birkedal, K. Matchev and M. Perelstein, Dark matter at colliders: A Model independent approach, Phys. Rev. D 70 (2004) 077701 [hep-ph/0403004] [INSPIRE].

    ADS  Google Scholar 

  2. C. Bartels and J. List, Model-independent WIMP searches at the ILC, eConf C 0705302 (2007) COS02 [arXiv:0709.2629] [INSPIRE].

  3. C. Bartels and J. List, Model independent WIMP Searches in full Simulation of the ILD Detector, arXiv:1007.2748 [INSPIRE].

  4. C. Bartels, O. Kittel, U. Langenfeld and J. List, Model-independent WIMP Characterisation using ISR, arXiv:1202.6516 [INSPIRE].

  5. C. Bartels, M. Berggren and J. List, Characterising WIMPs at a future e+e Linear Collider, Eur. Phys. J. C 72 (2012) 2213 [arXiv:1206.6639] [INSPIRE].

    ADS  Google Scholar 

  6. M. Beltrán, D. Hooper, E.W. Kolb, Z.A. Krusberg and T.M. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Goodman et al., Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    ADS  Google Scholar 

  8. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the Frontier of Dark Matter Direct Detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Goodman et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  10. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  11. CMS collaboration, S. Chatrchyan et al., Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

    Article  ADS  Google Scholar 

  12. ATLAS collaboration, G. Aad et al., Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].

    Article  ADS  Google Scholar 

  13. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Google Scholar 

  14. Y. Mambrini and B. Zaldivar, When LEP and Tevatron combined with WMAP and XENON100 shed light on the nature of Dark Matter, JCAP 10 (2011) 023 [arXiv:1106.4819] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Konar, K. Kong, K.T. Matchev and M. Perelstein, Shedding Light on the Dark Sector with Direct WIMP Production, New J. Phys. 11 (2009) 105004 [arXiv:0902.2000] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Pasztor and M. Perelstein, Exploring new physics through contact interactions in lepton pair production at a linear collider, eConf C010630 (2001) P315 [hep-ph/0111471] [INSPIRE].

  17. I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].

    ADS  Google Scholar 

  18. P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].

    ADS  Google Scholar 

  19. J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron Bounds on the Dark Matter Direct Detection Cross-Section for Vector Mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Phinney, ILC Reference Design Report - Accelerator Executive Summary, ICFA Beam Dyn. Newslett. 42 (2007) 7.

    Google Scholar 

  23. S. Boogert et al., Polarimeters and Energy Spectrometers for the ILC Beam Delivery System, 2009 JINST 4 P10015 [arXiv:0904.0122] [INSPIRE].

  24. M.E. Peskin, Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements, arXiv:1207.2516 [INSPIRE].

  25. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. Dreiner, M. Huck, M. Krämer, D. Schmeier and J. Tattersall, Illuminating Dark Matter at the ILC, Phys. Rev. D 87 (2013) 075015 [arXiv:1211.2254] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Perelstein.

Additional information

ArXiv ePrint: 1211.4008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, Y.J., Perelstein, M. Dark matter search at a linear collider: effective operator approach. J. High Energ. Phys. 2013, 138 (2013). https://doi.org/10.1007/JHEP05(2013)138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)138

Keywords