Abstract
We study the large N θ dependence and the η ′ potential in supersymmetric QCD with small soft SUSY-breaking terms. Known exact results in SUSY QCD are found to reflect a variety of expectations from large N perturbation theory, including the presence of branches and the behavior of theories with matter (both with N f ≪ N and N f ∼ N ). However, there are also striking departures from ordinary QCD and the conventional large N description: instanton effects, when under control, are not exponentially suppressed at large N , and branched structure in supersymmetric QCD is always associated with approximate discrete symmetries. We suggest that these differences motivate further study of large N QCD on the lattice.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
E. Witten, Instantons, the Quark Model and the 1/n Expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].
E. Witten, Large-N Chiral Dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].
E. Witten, Theta dependence in the large-N limit of four-dimensional gauge theories, Phys. Rev. Lett. 81 (1998) 2862 [hep-th/9807109] [INSPIRE].
E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].
C. Bonati, M. D’Elia, P. Rossi and E. Vicari, θ dependence of 4D SU(N ) gauge theories in the large-N limit, Phys. Rev. D 94 (2016) 085017 [arXiv:1607.06360] [INSPIRE].
M. Teper, Large-N , PoS(LATTICE 2008)022 [arXiv:0812.0085] [INSPIRE].
M.A. Shifman, Nonperturbative dynamics in supersymmetric gauge theories, Prog. Part. Nucl. Phys. 39 (1997) 1 [hep-th/9704114] [INSPIRE].
N.J. Evans, S.D.H. Hsu and M. Schwetz, Controlled soft breaking of N = 1 SQCD, Phys. Lett. B 404 (1997) 77 [hep-th/9703197] [INSPIRE].
K. Konishi, Confinement, supersymmetry breaking and theta parameter dependence in the Seiberg-Witten model, Phys. Lett. B 392 (1997) 101 [hep-th/9609021] [INSPIRE].
M. Ünsal, Theta dependence, sign problems and topological interference, Phys. Rev. D 86 (2012) 105012 [arXiv:1201.6426] [INSPIRE].
E. Poppitz, T. Schäfer and M. Ünsal, Universal mechanism of (semi-classical) deconfinement and θ-dependence for all simple groups, JHEP 03 (2013) 087 [arXiv:1212.1238] [INSPIRE].
I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].
N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D 49 (1994) 6857 [hep-th/9402044] [INSPIRE].
K.A. Intriligator, R.G. Leigh and N. Seiberg, Exact superpotentials in four-dimensions, Phys. Rev. D 50 (1994) 1092 [hep-th/9403198] [INSPIRE].
N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].
O. Aharony, J. Sonnenschein, M.E. Peskin and S. Yankielowicz, Exotic nonsupersymmetric gauge dynamics from supersymmetric QCD, Phys. Rev. D 52 (1995) 6157 [hep-th/9507013] [INSPIRE].
Y. Oz and A. Pasquinucci, Branes and theta dependence, Phys. Lett. B 444 (1998) 318 [hep-th/9809173] [INSPIRE].
G. Gabadadze and M. Shifman, QCD vacuum and axions: What’s happening?, Int. J. Mod. Phys. A 17 (2002) 3689 [hep-ph/0206123] [INSPIRE].
S.P. Martin and J.D. Wells, Chiral symmetry breaking and effective Lagrangians for softly broken supersymmetric QCD, Phys. Rev. D 58 (1998) 115013 [hep-th/9801157] [INSPIRE].
G. ’t Hooft, Topology of the Gauge Condition and New Confinement Phases in Nonabelian Gauge Theories, Nucl. Phys. B 190 (1981) 455 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Instanton Effects in Supersymmetric Theories, Nucl. Phys. B 229 (1983) 407 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low Function of Supersymmetric Yang-Mills Theories from Instanton Calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric Instanton Calculus (Gauge Theories with Matter), Nucl. Phys. B 260 (1985) 157 [INSPIRE].
D. Finnell and P. Pouliot, Instanton calculations versus exact results in four-dimensional SUSY gauge theories, Nucl. Phys. B 453 (1995) 225 [hep-th/9503115] [INSPIRE].
S.R. Coleman and E. Witten, Chiral Symmetry Breakdown in Large-N Chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [INSPIRE].
M.E. Peskin, Duality in supersymmetric Yang-Mills theory, hep-th/9702094 [INSPIRE].
A. Armoni, M. Shifman and G. Veneziano, QCD quark condensate from SUSY and the orientifold large-N expansion, Phys. Lett. B 579 (2004) 384 [hep-th/0309013] [INSPIRE].
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
K. Konishi, Anomalous Supersymmetry Transformation of Some Composite Operators in SQCD, Phys. Lett. B 135 (1984) 439 [INSPIRE].
I. Affleck, Testing the Instanton Method, Phys. Lett. B 92 (1980) 149 [INSPIRE].
I. Affleck, The Role of Instantons in Scale Invariant Gauge Theories, Nucl. Phys. B 162 (1980) 461 [INSPIRE].
I. Affleck, The Role of Instantons in Scale Invariant Gauge Theories. 2. The Short Distance Limit, Nucl. Phys. B 171 (1980) 420 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Instantons in supersymmetric theories, Nucl. Phys. B 223 (1983) 445 [INSPIRE].
V.A. Novikov, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Supersymmetry Transformations of Instantons, Nucl. Phys. B 229 (1983) 394 [INSPIRE].
G.C. Rossi and G. Veneziano, Nonperturbative Breakdown of the Nonrenormalization Theorem in Supersymmetric QCD, Phys. Lett. B 138 (1984) 195 [INSPIRE].
N.M. Davies, T.J. Hollowood and V.V. Khoze, Monopoles, affine algebras and the gluino condensate, J. Math. Phys. 44 (2003) 3640 [hep-th/0006011] [INSPIRE].
M. Dine, G. Festuccia, L. Pack, C.-S. Park, L. Ubaldi and W. Wu, Supersymmetric QCD: Exact Results and Strong Coupling, JHEP 05 (2011) 061 [arXiv:1104.0461] [INSPIRE].
M.A. Shifman, Domain walls and decay rate of the excited vacua in the large-N Yang-Mills theory, Phys. Rev. D 59 (1999) 021501 [hep-th/9809184] [INSPIRE].
Y. Nambu, Strings, Monopoles and Gauge Fields, Phys. Rev. D 10 (1974) 4262 [INSPIRE].
S. Mandelstam, Vortices and Quark Confinement in Nonabelian Gauge Theories, Phys. Rept. 23 (1976) 245 [INSPIRE].
G. ’t Hooft, Gauge Fields with Unified Weak, Electromagnetic, and Strong Interactions, in High-Energy Physics: Proceedings, EPS International Conference, Palermo, Italy, 23-28 June 1975, pg. 1225 [INSPIRE].
G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].
O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1612.05770
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Dine, M., Draper, P., Stephenson-Haskins, L. et al. θ and the η ′ in large N supersymmetric QCD. J. High Energ. Phys. 2017, 122 (2017). https://doi.org/10.1007/JHEP05(2017)122
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2017)122