Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vector-vector scattering at the LHC with two charged leptons and two neutrinos in the final state

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A complete parton level analysis of 22ν2j and 42j,  = μ, e production at the LHC is presented, including all processes at order \( \mathcal{O}\left( {\alpha_{\text{EM}}^6} \right) \), \( \mathcal{O}\left( {\alpha_{\text{EM}}^4\alpha_{\text{S}}^2} \right) \). The infinite Higgs mass scenario, which is considered as a benchmark for strong scattering theories and is the limiting case for composite Higgs models, and one example of Strongly Interacting Light Higgs models are confronted with the Standard Model light Higgs predictions. This analysis is combined with the results in the ℓν + four jets, the + + four jets and the 3ℓν + two jets channels presented in previous papers, in order to determine whether these alternative Higgs frameworks can be detected as an excess of events in boson-boson scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. G. Jarlskog and D. Rein, proceedings of the Large Hadron Collider Workshop, Aachen Switzerland, CERN-90-10 (1990).

  2. A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    Article  ADS  Google Scholar 

  3. ATLAS collaboration, Detector and physics performance technical design report, vol. 1, CERN-LHCC-99-14 (1999).

  4. ATLAS collaboration, Detector and physics performance technical design report, vol. 2, CERN-LHCC-99-15 (1999).

  5. Higgs Working Group collaboration, K.A. Assamagan et al., The Higgs working group: Summary report 2003, hep-ph/0406152 [SPIRES].

  6. CMS collaboration, Technical design report, vol. 1, CERN/LHCC 2006-001 (2006).

  7. CMS collaboration, Technical design report, vol. 2, CERN/LHCC 2006-021 (2006).

  8. M.S. Chanowitz, Strong W W scattering at the end of the 90’s: Theory and experimental prospects, hep-ph/9812215 [SPIRES].

  9. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [SPIRES].

    ADS  Google Scholar 

  10. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. N.S. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. Y. Hosotani, Dynamics of nonintegrable phases and gauge symmetry breaking, Ann. Phys. 190 (1989) 233 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Csáki, C. Grojean and H. Murayama, Standard model Higgs from higher dimensional gauge fields, Phys. Rev. D 67 (2003) 085012 [hep-ph/0210133] [SPIRES].

    ADS  Google Scholar 

  15. C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [SPIRES].

    Article  ADS  Google Scholar 

  16. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [SPIRES].

    Article  ADS  Google Scholar 

  17. S. Chang, A ’littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057 [hep-ph/0306034] [SPIRES].

    Article  ADS  Google Scholar 

  18. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [SPIRES].

    Article  ADS  Google Scholar 

  19. T. Appelquist and C.W. Bernard, Strongly interacting Higgs bosons, Phys. Rev. D 22 (1980) 200 [SPIRES].

    ADS  Google Scholar 

  20. A.C. Longhitano, Heavy Higgs bosons in the Weinberg-Salam model, Phys. Rev. D 22 (1980) 1166 [SPIRES].

    ADS  Google Scholar 

  21. A.C. Longhitano, Low-energy impact of a heavy Higgs boson sector, Nucl. Phys. B 188 (1981) 118 [SPIRES].

    Article  ADS  Google Scholar 

  22. T. Appelquist and G.-H. Wu, The electroweak chiral lagrangian and new precision measurements, Phys. Rev. D 48 (1993) 3235 [hep-ph/9304240] [SPIRES].

    ADS  Google Scholar 

  23. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [SPIRES].

    Article  ADS  Google Scholar 

  24. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [SPIRES].

    ADS  Google Scholar 

  25. M.J. Duncan, G.L. Kane and W.W. Repko, W W physics at future colliders, Nucl. Phys. B 272 (1986) 517 [SPIRES].

    Article  ADS  Google Scholar 

  26. D.A. Dicus and R. Vega, W W production from P P collisions, Phys. Rev. Lett. 57 (1986) 1110 [SPIRES].

    Article  ADS  Google Scholar 

  27. R.N. Cahn, S.D. Ellis, R. Kleiss and W.J. Stirling, Transverse momentum signatures for heavy Higgs bosons, Phys. Rev. D 35 (1987) 1626 [SPIRES].

    ADS  Google Scholar 

  28. V.D. Barger, T. Han and R.J.N. Phillips, Improving the heavy Higgs boson two charged lepton — two neutrino signal, Phys. Rev. D 37 (1988) 2005 [SPIRES].

    ADS  Google Scholar 

  29. R. Kleiss and W.J. Stirling, Tagging the Higgs, Phys. Lett. B 200 (1988) 193 [SPIRES].

    ADS  Google Scholar 

  30. V.D. Barger, K.-m.Cheung, T. Han and R.J.N. Phillips, Strong W + W + scattering signals at p p supercolliders, Phys. Rev. D 42 (1990) 3052 [SPIRES].

    ADS  Google Scholar 

  31. V.D. Barger, K.-m. Cheung, T. Han, J. Ohnemus and D. Zeppenfeld, A comparative study of the benefits of forward jet tagging in heavy Higgs production at the SSC, Phys. Rev. D 44 (1991) 1426 [SPIRES].

    ADS  Google Scholar 

  32. V.D. Barger, K.-m. Cheung, T. Han, A. Stange and D. Zeppenfeld, Full tree level calculation of the q q → q q W Z electroweak process at hadron supercolliders, Phys. Rev. D 46 (1992) 2028 [SPIRES].

    ADS  Google Scholar 

  33. D. Froideveaux, Experimental review of the search for the Higgs boson, in the proceedings of the Large Hadron Collider Workshop, Aachen Switzerland, G. Jarlskog and D. Rein eds., CERN-90-10 (1990) 444.

  34. M.H. Seymour, Tagging a heavy Higgs boson, in the proceedings of the Large Hadron Collider Workshop, Aachen Switzerland, G. Jarlskog and D. Rein eds., CERN-90-10 (1990) 557.

  35. U. Baur and E.W.N. Glover, Tagging the Higgs boson in p p → W + W- jj, Phys. Lett. B 252 (1990) 683 [SPIRES].

    ADS  Google Scholar 

  36. D.A. Dicus, J.F. Gunion and R. Vega, Isolating the scattering of longitudinal W+’s at the SSC using like sign dileptons, Phys. Lett. B 258 (1991) 475 [SPIRES].

    ADS  Google Scholar 

  37. D.A. Dicus, J.F. Gunion, L.H. Orr and R. Vega, Isolating purely leptonic signals for strong W scattering using antitagging jet tagging and lepton isolation, Nucl. Phys. B 377 (1992) 31 [SPIRES].

    Article  ADS  Google Scholar 

  38. J. Bagger et al., The strongly interacting W W system: gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [SPIRES].

    ADS  Google Scholar 

  39. V.D. Barger, R.J.N. Phillips and D. Zeppenfeld, Mini-jet veto: a tool for the heavy Higgs search at the LHC, Phys. Lett. B 346 (1995) 106 [hep-ph/9412276] [SPIRES].

    ADS  Google Scholar 

  40. J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].

    ADS  Google Scholar 

  41. K. Iordanidis and D. Zeppenfeld, Searching for a heavy Higgs boson via the H → lepton neutrino jet jet mode at the CERN LHC, Phys. Rev. D 57 (1998) 3072 [hep-ph/9709506] [SPIRES].

    ADS  Google Scholar 

  42. D.L. Rainwater and D. Zeppenfeld, Observing H → W (∗) W (∗) → e ± μ /p T in weak boson fusion with dual forward jet tagging at the CERN LHC, Phys. Rev. D 60 (1999) 113004 [Erratum ibid. D 61 (2000) 099901] [hep-ph/9906218] [SPIRES].

    ADS  Google Scholar 

  43. E. Accomando, A. Ballestrero, S. Bolognesi, E. Maina and C. Mariotti, Boson boson scattering and Higgs production at the LHC from a six fermion point of view: Four jets + l ν processes at O(α 6em ), JHEP 03 (2006) 093 [hep-ph/0512219] [SPIRES].

    Article  ADS  Google Scholar 

  44. E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Boson fusion and Higgs production at the LHC in six fermion final states with one charged lepton pair, Phys. Rev. D 75 (2007) 113006 [hep-ph/0603167] [SPIRES].

    ADS  Google Scholar 

  45. G. Bevilacqua, Physics studies at the LHC with PHANTOM, in the Proceedings of the Workshop on Monte Carlo’s, physics and simulations at the LHC PART II, Frascati, Italy, F. Ambroglini et al. eds., (2009) [arXiv:0902.0180].

  46. K. Cheung, C.-W. Chiang and T.-C. Yuan, Partially strong WW scattering, Phys. Rev. D 78 (2008) 051701 [arXiv:0803.2661] [SPIRES].

    ADS  Google Scholar 

  47. B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W- production via vector-boson fusion, JHEP 07 (2006) 015 [hep-ph/0603177] [SPIRES].

    Article  ADS  Google Scholar 

  48. B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to Z boson pair production via vector-boson fusion, Phys. Rev. D 73 (2006) 113006 [hep-ph/0604200] [SPIRES].

    ADS  Google Scholar 

  49. G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + Z and W-Z production via vector-boson fusion, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105] [SPIRES].

    ADS  Google Scholar 

  50. B. Jager, C. Oleari and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W + jj and W-W-jj production via weak-boson fusion, Phys. Rev. D 80 (2009) 034022 [arXiv:0907.0580] [SPIRES].

    ADS  Google Scholar 

  51. K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [SPIRES].

    Article  ADS  Google Scholar 

  52. C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [SPIRES].

    Article  ADS  Google Scholar 

  53. T. Han, D. Krohn, L.-T. Wang and W. Zhu, New physics signals in longitudinal gauge boson scattering at the LHC, JHEP 03 (2010) 082 [arXiv:0911.3656] [SPIRES].

    Article  ADS  Google Scholar 

  54. A. Ballestrero, G. Bevilacqua and E. Maina, A complete parton level analysis of boson-boson scattering and ElectroWeak Symmetry Breaking in lv + four jets production at the LHC, JHEP 05 (2009) 015 [arXiv:0812.5084] [SPIRES].

    Article  ADS  Google Scholar 

  55. A. Ballestrero, G. Bevilacqua, D.B. Franzosi and E. Maina, How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels?, JHEP 11 (2009) 126 [arXiv:0909.3838] [SPIRES].

    Article  ADS  Google Scholar 

  56. J. Bagger et al., The strongly interacting W W system: Gold plated modes, Phys. Rev. D 49 (1994) 1246 [hep-ph/9306256] [SPIRES].

    ADS  Google Scholar 

  57. J. Bagger et al., CERN LHC analysis of the strongly interacting W W system: Gold plated modes, Phys. Rev. D 52 (1995) 3878 [hep-ph/9504426] [SPIRES].

    ADS  Google Scholar 

  58. Z. Sullivan and E.L. Berger, The missing heavy flavor backgrounds to Higgs boson production, Phys. Rev. D 74 (2006) 033008 [hep-ph/0606271] [SPIRES].

    ADS  Google Scholar 

  59. Z. Sullivan and E.L. Berger, Trilepton production at the CERN LHC: Standard model sources and beyond, Phys. Rev. D 78 (2008) 034030 [arXiv:0805.3720] [SPIRES].

    ADS  Google Scholar 

  60. B. Zhu, P. Govoni, Y. Mao, C. Mariotti and W. Wu, Same sign WW scattering process as a probe of Higgs boson in pp collision at \( \sqrt {s} = 10 \) TeV, Eur. Phys. J. C 71 (2011) 1514 [arXiv:1010.5848] [SPIRES].

    ADS  Google Scholar 

  61. O.J.P. Eboli, M.C. Gonzalez-Garcia and J.K. Mizukoshi, pp → j j e + -mu + -nu nu and j j e + -mu- + nunuat O(α 6em ) and O(α 4em α 2s ) for the study of the quartic electroweak gauge boson vertex at LHC, Phys. Rev. D 74 (2006) 073005 [hep-ph/0606118] [SPIRES].

    ADS  Google Scholar 

  62. C. Englert, B. Jager, M. Worek and D. Zeppenfeld, Observing strongly interacting vector boson systems at the CERN Large Hadron Collider, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861] [SPIRES].

    ADS  Google Scholar 

  63. A. Ballestrero, A. Belhouari, G. Bevilacqua, V. Kashkan and E. Maina, PHANTOM: a Monte Carlo event generator for six parton final states at high energy colliders, Comput. Phys. Commun. 180 (2009) 401 [arXiv:0801.3359] [SPIRES].

    Article  ADS  Google Scholar 

  64. E. Accomando, A. Ballestrero and E. Maina, PHASE, a Monte Carlo event generator for six-fermion physics at the LHC, JHEP 07 (2005) 016 [hep-ph/0504009] [SPIRES].

    Article  ADS  Google Scholar 

  65. A. Ballestrero and E. Maina, A new method for helicity calculations, Phys. Lett. B 350 (1995) 225 [hep-ph/9403244] [SPIRES].

    ADS  Google Scholar 

  66. A. Ballestrero, PHACT: Helicity amplitudes for present and future colliders, hep-ph/9911318 [SPIRES].

  67. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [SPIRES].

    Article  ADS  Google Scholar 

  68. T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [SPIRES].

    Article  ADS  Google Scholar 

  69. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  70. H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11 (1992) [SPIRES].

  71. J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [SPIRES].

    Article  ADS  Google Scholar 

  72. CTEQ collaboration, H.L. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [SPIRES].

    Article  ADS  Google Scholar 

  73. D. Buarque Franzosi, Strong vector boson scattering: benchmark and unitarized models at the LHC, Ph.D Thesis, Università di Torino, Torino, Italy (2011).

  74. A. Ballestrero, D. Buarque Franzosi, E. Maina and L. Oggero, Vector Boson Scattering at the LHC: counting experiments for unitarized models in a full six fermion approach, in preparation.

  75. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Uncertainties of predictions from parton distributions. 1: Experimental errors, Eur. Phys. J. C 28 (2003) 455 [hep-ph/0211080] [SPIRES].

    ADS  Google Scholar 

  76. A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Uncertainties of predictions from parton distributions. I: Theoretical errors, Eur. Phys. J. C 35 (2004) 325 [hep-ph/0308087] [SPIRES].

    Article  ADS  Google Scholar 

  77. A. Kulesza and W.J. Stirling, Like sign W boson production at the LHC as a probe of double parton scattering, Phys. Lett. B 475 (2000) 168 [hep-ph/9912232] [SPIRES].

    ADS  Google Scholar 

  78. E. Maina, Multiple parton interactions in Z + 4j, W ± W ± +0/2j and W + W − +2j production at the LHC, JHEP 09 (2009) 081 [arXiv:0909.1586] [SPIRES].

    Article  ADS  Google Scholar 

  79. J.R. Gaunt, C.-H. Kom, A. Kulesza and W.J. Stirling, Same-sign W pair production as a probe of double parton scattering at the LHC, Eur. Phys. J. C 69 (2010) 53 [arXiv:1003.3953] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Maina.

Additional information

ArXiv ePrint: 1011.1514

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballestrero, A., Franzosi, D.B. & Maina, E. Vector-vector scattering at the LHC with two charged leptons and two neutrinos in the final state. J. High Energ. Phys. 2011, 13 (2011). https://doi.org/10.1007/JHEP06(2011)013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)013

Keywords