Abstract
Polarimetric experiments driven by the strong field of a circularly polarized laser wave can become a powerful tool to limit the parameter space of not yet detected hidden-photons and minicharged particles associated with extra U(1) gauge symmetries. We show how the absorption and dispersion of probe electromagnetic waves in the vacuum polarized by such a background are modified due to the coupling between the visible U(1)-gauge sector and these hypothetical degrees of freedom. The results of this analysis reveal that the regime close to the two-photon reaction threshold can be a sensititive probe of these hidden particles. Parameters of modern laser systems are used to estimate the projected sensitivities on the corresponding coupling constants in regions where experiments driven by dipole magnets are less constricted. The role played by a paraphoton field is analyzed via a comparison with a model in which the existence of minicharges is assumed only. For both scenarios is found that the most stringent exclusion limit occurs at the lowest threshold mass; this one being determined by a certain combination of the field frequencies and dictated by energy momentum balance of the photo-production of a pair of minicharged particles. The dependencies of the observables on the laser attributes as well as on the unknown particle parameters are also analyzed.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].
O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].
O. Lebedev and S. Ramos-Sanchez, The NMSSM and String Theory,Phys. Lett. B 684 (2010) 48 [arXiv:0912.0477] [INSPIRE].
M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally Light Hidden Photons in LARGE Volume String Compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].
J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].
A. Ringwald, Exploring the Role of Axions and Other WISPs in the Dark Universe, Phys. Dark Univ. 1 (2012) 116 [arXiv:1210.5081] [INSPIRE].
J.L. Hewett et al., Fundamental Physics at the Intensity Frontier, Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier, [arXiv:1205.2671] [INSPIRE].
R. Essig, J.A. Jaros, W. Wester, P.H. Adrian, S. Andreas et al., Working Group Report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
L.B. Okun, Limits of electrodynamics: paraphotons?, Sov. Phys. JETP 56 (1982) 502 [Zh. Eksp. Teor. Fiz. 83 (1982) 892] [INSPIRE].
P. Langacker, The Physics of Heavy Z ′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
M. Ahlers, H. Gies, J. Jaeckel, J. Redondo and A. Ringwald, Light from the hidden sector, Phys. Rev. D 76 (2007) 115005 [arXiv:0706.2836] [INSPIRE].
M. Ahlers, H. Gies, J. Jaeckel, J. Redondo and A. Ringwald, Laser experiments explore the hidden sector, Phys. Rev. D 77 (2008) 095001 [arXiv:0711.4991] [INSPIRE].
B. Holdom, Two U(1)’s and ǫ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
B.A. Dobrescu and I. Mocioiu, Spin-dependent macroscopic forces from new particle exchange, JHEP 11 (2006) 005 [hep-ph/0605342] [INSPIRE].
H. Gies, J. Jaeckel and A. Ringwald, Polarized light propagating in a magnetic field as a probe of millicharged fermions, Phys. Rev. Lett. 97 (2006) 140402 [hep-ph/0607118] [INSPIRE].
M. Ahlers, H. Gies, J. Jaeckel and A. Ringwald, On the particle interpretation of the PVLAS data: neutral versus charged particles, Phys. Rev. D 75 (2007) 035011 [hep-ph/0612098] [INSPIRE].
B. Batell and T. Gherghetta, Localized U(1) gauge fields, millicharged particles and holography, Phys. Rev. D 73 (2006) 045016 [hep-ph/0512356] [INSPIRE].
F. Brummer, J. Jaeckel and V.V. Khoze, Magnetic mixing: electric minicharges from magnetic monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].
E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, Extra U(1) as natural source of a monochromatic gamma ray line, JHEP 10 (2012) 123 [arXiv:1205.1520] [INSPIRE].
B. Döbrich and H. Gies, Interferometry of light propagation in pulsed fields, Europhys. Lett. 87 (2009) 21002 [arXiv:0904.0216] [INSPIRE].
H. Gies, External fields as a probe for fundamental physics, J. Phys. A 41 (2008) 164039 [arXiv:0711.1337] [INSPIRE].
W. Dittrich and H. Gies, Probing the quantum vacuum, Springer, Heidelberg Germany (2000).
K. Hattori and K. Itakura, Vacuum birefringence in strong magnetic fields: (I) photon polarization tensor with all the Landau levels, Ann. Phys. 330 (2013) 23 [arXiv:1209.2663] [INSPIRE].
S. Villalba-Chávez and A.E. Shabad, QED with external field: Hamiltonian treatment for anisotropic medium formed by the Lorentz-non-invariant vacuum, Phys. Rev. D 86 (2012) 105040 [arXiv:1206.4491] [INSPIRE].
J. Jaeckel, Probing minicharged particles with tests of Coulomb’s law, Phys. Rev. Lett. 103 (2009) 080402 [arXiv:0904.1547] [INSPIRE].
J. Jaeckel and S. Roy, Spectroscopy as a test of Coulomb’s law: a probe of the hidden sector,Phys. Rev. D 82 (2010) 125020 [arXiv:1008.3536] [INSPIRE].
J. Redondo and A. Ringwald, Light shining through walls, Contemp. Phys. 52 (2011) 211 [arXiv:1011.3741] [INSPIRE].
P. Arias, J. Jaeckel, J. Redondo and A. Ringwald, Optimizing light-shining-through-a-wall experiments for axion and other WISP searches, Phys. Rev. D 82 (2010) 115018 [arXiv:1009.4875] [INSPIRE].
R. Cameron, G. Cantatore, A.C. Melissinos, G. Ruoso, Y. Semertzidis et al., Search for nearly massless, weakly coupled particles by optical techniques, Phys. Rev. D 47 (1993) 3707 [INSPIRE].
PVLAS collaboration, E. Zavattini et al., New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum, Phys. Rev. D 77 (2008) 032006 [arXiv:0706.3419] [INSPIRE].
PVLAS collaboration, F. Della Valle et al., Measurements of vacuum magnetic birefringence using permanent dipole magnets: the PVLAS experiment, New J. Phys. 15 (2013) 053026 [arXiv:1301.4918] [INSPIRE].
R. Battesti et al., The BMV experiment: a novel apparatus to study the propagation of light in a transverse magnetic field, Eur. Phys. J. D 46 (2008) 323.
S.-J. Chen, H.-H. Mei and W.-T. Ni, Q & A experiment to search for vacuum dichroism, pseudoscalar-photon interaction and millicharged fermions, Mod. Phys. Lett. A 22 (2007) 2815 [hep-ex/0611050] [INSPIRE].
ALPS collaboration, K. Ehret et al., New ALPS Results on Hidden-Sector Lightweights, Phys. Lett. B 689 (2010) 149 [arXiv:1004.1313] [INSPIRE].
ALPS collaboration, K. Ehret et al., Resonant laser power build-up in ALPS: a ‘light-shining-through-walls’ experiment, Nucl. Instrum. Meth. A 612 (2009) 83 [arXiv:0905.4159] [INSPIRE].
GammeV (T-969) collaboration, A.S. Chou et al., Search for axion-like particles using a variable baseline photon regeneration technique, Phys. Rev. Lett. 100 (2008) 080402 [arXiv:0710.3783] [INSPIRE].
J.H. Steffen and A. Upadhye, The GammeV suite of experimental searches for axion-like particles, Mod. Phys. Lett. A 24 (2009) 2053 [arXiv:0908.1529] [INSPIRE].
A. Afanasev, O.K. Baker, K.B. Beard, G. Biallas, J. Boyce et al., New experimental limit on optical photon coupling to neutral, scalar bosons, Phys. Rev. Lett. 101 (2008) 120401 [arXiv:0806.2631] [INSPIRE].
A.V. Afanasev, O.K. Baker and K.W. McFarlane, Production and detection of very light spin-zero bosons at optical frequencies, hep-ph/0605250 [INSPIRE].
OSQAR collaboration, P. Pugnat et al., First results from the OSQAR photon regeneration experiment: no light shining through a wall, Phys. Rev. D 78 (2008) 092003 [arXiv:0712.3362] [INSPIRE].
C. Robilliard et al., No light shining through a wall, Phys. Rev. Lett. 99 (2007) 190403 [arXiv:0707.1296] [INSPIRE].
M. Fouche et al., Search for photon oscillations into massive particles, Phys. Rev. D 78 (2008) 032013 [arXiv:0808.2800] [INSPIRE].
S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].
E. Masso and J. Redondo, Compatibility of CAST search with axion-like interpretation of PVLAS results, Phys. Rev. Lett. 97 (2006) 151802 [hep-ph/0606163] [INSPIRE].
J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The need for purely laboratory-based axion-like particle searches, Phys. Rev. D 75 (2007) 013004 [hep-ph/0610203] [INSPIRE].
R. Bähre et al., Any light particle search II − Technical Design Report, 2013 JINST 8 T09001 [arXiv:1302.5647] [INSPIRE].
P. Sikivie, D.B. Tanner and K. van Bibber, Resonantly enhanced axion-photon regeneration, Phys. Rev. Lett. 98 (2007) 172002 [hep-ph/0701198] [INSPIRE].
G. Müller, P. Sikivie, D.B. Tanner and K. van Bibber, Detailed design of a resonantly-enhanced axion-photon regeneration experiment, Phys. Rev. D 80 (2009) 072004 [arXiv:0907.5387] [INSPIRE].
H. Gies, J. Jaeckel and A. Ringwald, Accelerator Cavities as a Probe of Millicharged Particles, Europhys. Lett. 76 (2006) 794 [hep-ph/0608238] [INSPIRE].
B. Döbrich, H. Gies, N. Neitz and F. Karbstein, Magnetically amplified tunneling of the 3rd kind as a probe of minicharged particles, Phys. Rev. Lett. 109 (2012) 131802 [arXiv:1203.2533] [INSPIRE].
B. Döbrich, H. Gies, N. Neitz and F. Karbstein, Magnetically amplified light-shining-through-walls via virtual minicharged particles, Phys. Rev. D 87 (2013) 025022 [arXiv:1203.4986] [INSPIRE].
H. Gies, Strong laser fields as a probe for fundamental physics, Eur. Phys. J. D 55 (2009) 311 [arXiv:0812.0668] [INSPIRE].
B. Döbrich and H. Gies, Axion-like-particle search with high-intensity lasers, JHEP 10 (2010) 022 [arXiv:1006.5579] [INSPIRE].
B. Döbrich and H. Gies, High-Intensity Probes of Axion-Like Particles, arXiv:1010.6161 [INSPIRE].
D. Tommasini, A. Ferrando, H. Michinel and M. Seco, Precision tests of QED and non-standard models by searching photon-photon scattering in vacuum with high power lasers, JHEP 11 (2009) 043 [arXiv:0909.4663] [INSPIRE].
S. Villalba-Chávez and A. Di Piazza, Axion-induced birefringence effects in laser driven nonlinear vacuum interaction, JHEP 11 (2013) 136 [arXiv:1307.7935] [INSPIRE].
S. Villalba-Chávez and C. Müller, Searching for minicharged particles via birefringence, dichroism and Raman spectroscopy of the vacuum polarized by a high-intensity laser wave, Annals Phys. 339 (2013) 460 [arXiv:1306.6456] [INSPIRE].
S. Villalba-Chávez, Laser-driven search of axion-like particles including vacuum polarization effects, Nucl. Phys. B 881 (2014) 391 [arXiv:1308.4033] [INSPIRE].
T. Heinzl, B. Leifeld, K. U. Amthor, H. Schwoerer, R. Sauerbrey and A. Wipf, On the observation of vacuum birefringence, Opt. Comm. 267 (2006) 318 [hep-ph/0601076] [INSPIRE].
B. King, P. Böhl and H. Ruhl, Interaction of photons traversing a slowly varying electromagnetic background, Phys. Rev. D 90 (2014) 065018 [arXiv:1406.4139] [INSPIRE].
A. Di Piazza, A.I. Milstein and C.H. Keitel, Photon splitting in a laser field, Phys. Rev. A 76 (2007) 032103 [arXiv:0704.0695] [INSPIRE].
B. King, A. Di Piazza and C.H. Keitel, A matterless double slit, Nature Photon. 4 (2010) 92 [arXiv:1301.7038] [INSPIRE].
K.Z. Hatsagortsyan and G.Y. Kryuchkyan, Bragg scattering of light in vacuum structured by strong periodic fields, Phys. Rev. Lett. 107 (2011) 053604.
A. Di Piazza, C. Müller, K.Z. Hatsagortsyan and C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177 [arXiv:1111.3886] [INSPIRE].
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].
F. Hebenstreit, R. Alkofer, G.V. Dunne and H. Gies, Momentum signatures for Schwinger pair production in short laser pulses with sub-cycle structure, Phys. Rev. Lett. 102 (2009) 150404 [arXiv:0901.2631] [INSPIRE].
I. Akal, S. Villalba-Chávez and C. Müller, Electron-positron pair production in a bifrequent oscillating electric field, Phys. Rev. D 90 (2014) 113004 [arXiv:1409.1806] [INSPIRE].
https://www.gsi.de/en/start/research/forschungsgebiete und experimente/ appa pni gesundheit/plasma physicsphelix/phelix.htm.
C. Labaune et al., Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma, Nat. Commun. 4 (2013) 2506 [arXiv:1310.2002] [INSPIRE].
R.J. Rivers, Path integral methods in Quantum field theory, Cambridge University Press, U.S.A. (1987).
S. Villalba-Chávez, R. Alkofer and K. Schwenzer, On the connection between Hamilton and Lagrange formalism in Quantum Field Theory, J. Phys. G 37 (2010) 085003 [arXiv:0807.2146] [INSPIRE].
E.S. Fradkin, Quantum Field Theory and Hydrodynamics, Proceedings (Trudy) of the P.N. Lebedev Physics Institute. Vol. 29, Consultants Bureau, New York U.S.A. (1967).
R. Alkofer and L. von Smekal, The Infrared behavior of QCD Green’s functions: Confinement dynamical symmetry breaking and hadrons as relativistic bound states, Phys. Rept. 353 (2001) 281 [hep-ph/0007355] [INSPIRE].
V.N. Baıer, A.I. Mil’shte˘ın and V.M. Strakhovenko, Interaction between a photon and an intense electromagnetic wave, Sov. Phys. JETP 42 (1976) 961 [Zh. Eksp. Teo. Fiz. 69 (1975) 1893].
I. Affleck, Photon propagation in a plane wave field, J. Phys. A 21 (1988) 693 [INSPIRE].
V. Dinu, T. Heinzl, A. Ilderton, M. Marklund and G. Torgrimsson, Vacuum refractive indices and helicity flip in strong-field QED, Phys. Rev. D 89 (2014) 125003 [arXiv:1312.6419] [INSPIRE].
S. Villalba-Chávez and C. Müller, Photo-production of scalar particles in the field of a circularly polarized laser beam, Phys. Lett. B 718 (2013) 992 [arXiv:1208.3595] [INSPIRE].
W. Greiner and J. Reinhardt, Quantum Electrodynamics, Springer, Berlin Heidelberg (2009).
I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, seventh edition, Elsevier, San Diego (2007).
V.N. Ba˘ıer, V.M. Katkov and V.M. Strakhovenko. Electromagnetic processes at high energies in oriented single crystals, World Scientific, Singapore (1998).
W. Becker and H. Mitter, Vacuum polarization in laser fields, J. Phys. A 8 (1975) 1638.
K. Muroo, N. Ninomiya, M. Yoshino and Y. Takubo Measurement of the Cotton-Mouton constants of noble atoms, J. Opt. Soc. Am. B 20 (2003) 2249.
J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, We need lab experiments to look for axion-like particles, hep-ph/0605313 [INSPIRE].
E. Masso and J. Redondo, Evading astrophysical constraints on axion-like particles, JCAP 09 (2005) 015 [hep-ph/0504202] [INSPIRE].
J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1412.4678
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Villalba-Chávez, S., Müller, C. Light dark matter candidates in intense laser pulses I: paraphotons and fermionic minicharged particles. J. High Energ. Phys. 2015, 177 (2015). https://doi.org/10.1007/JHEP06(2015)177
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2015)177