Abstract
The standard model coherent elastic neutrino-nucleus scattering (CEνNS) cross section is subject to nuclear form factor uncertainties, mainly driven by the root-mean-square radius of the neutron density distribution. Motivated by COHERENT phases I-III and future multi-ton direct detection dark matter searches, we evaluate these uncertainties in cesium iodide, germanium, xenon and argon detectors. We find that the uncertainties become relevant for momentum transfers q ≳ 20 MeV and are essentially independent of the form factor parameterization. Consequently, form factor uncertainties are not important for CEνNS induced by reactor or solar neutrinos. Taking into account these uncertainties, we then evaluate their impact on measurements of CEνNS at COHERENT, the diffuse supernova background (DSNB) neutrinos and sub-GeV atmospheric neutrinos. We also calculate the relative uncertainties in the number of COHERENT events for different nuclei as a function of recoil energy. For DSNB and atmospheric neutrinos, event rates at a liquid argon detector can be uncertain to more than 5%. Finally, we consider the impact of form factor uncertainties on searches for nonstandard neutrino interactions, sterile neutrinos and neutrino generalized interactions. We point out that studies of new physics using CEνNS data are affected by neutron form factor uncertainties, which if not properly taken into account may lead to the misidentification of new physics signals. The uncertainties quantified here are also relevant for dark matter direct detection searches.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett. B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE].
K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev. C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE].
J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].
K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev. D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].
P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT Enlightenment of the Neutrino Dark Side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev. D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring New Physics in Coherent Elastic Neutrino-Nucleus Scattering, JCAP 11 (2018) 016 [arXiv:1805.01798] [INSPIRE].
D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev. D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].
M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev. D 98 (2018) 113010 [arXiv:1810.05606] [INSPIRE].
R.H. Helm, Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei, Phys. Rev. 104 (1956) 1466 [INSPIRE].
D.W.L. Sprung and J. Martorell, The symmetrized Fermi function and its transforms, J. Phys. A 30 (1997) 6525.
S. Klein and J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions, Phys. Rev. C 60 (1999) 014903 [hep-ph/9902259] [INSPIRE].
J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].
I. Angeli and K.P. Marinova, Table of experimental nuclear ground state charge radii: An update, Atom. Data Nucl. Data Tabl. 99 (2013) 69.
COHERENT collaboration, COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].
C.E. Aalseth et al., DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur. Phys. J. Plus 133 (2018) 131 [arXiv:1707.08145] [INSPIRE].
COHERENT collaboration, The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE].
D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
D.Z. Freedman, D.N. Schramm and D.L. Tubbs, The Weak Neutral Current and Its Effects in Stellar Collapse, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167 [INSPIRE].
MuLan collaboration, Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev. D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
S. Abrahamyan et al., Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering, Phys. Rev. Lett. 108 (2012) 112502 [arXiv:1201.2568] [INSPIRE].
C.J. Horowitz et al., Weak charge form factor and radius of 208Pb through parity violation in electron scattering, Phys. Rev. C 85 (2012) 032501 [arXiv:1202.1468] [INSPIRE].
C.J. Horowitz, K.S. Kumar and R. Michaels, Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA, Eur. Phys. J. A 50 (2014) 48 [arXiv:1307.3572] [INSPIRE].
M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett. 120 (2018) 072501 [arXiv:1710.02730] [INSPIRE].
J. Piekarewicz, private communication.
J. Piekarewicz, A.R. Linero, P. Giuliani and E. Chicken, Power of two: Assessing the impact of a second measurement of the weak-charge form factor of 208 Pb, Phys. Rev. C 94 (2016) 034316 [arXiv:1604.07799] [INSPIRE].
S. Ando and K. Sato, Relic neutrino background from cosmological supernovae, New J. Phys. 6 (2004) 170 [astro-ph/0410061] [INSPIRE].
S. Horiuchi, J.F. Beacom and E. Dwek, The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande, Phys. Rev. D 79 (2009) 083013 [arXiv:0812.3157] [INSPIRE].
G. Battistoni, A. Ferrari, T. Montaruli and P.R. Sala, The atmospheric neutrino flux below 100-MeV: The FLUKA results, Astropart. Phys. 23 (2005) 526 [INSPIRE].
A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: A multi-particle transport code (Program version 2005), CERN-2005-010 (2005) [INSPIRE].
L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
T.D. Lee and C.-N. Yang, Parity Nonconservation and a Two Component Theory of the Neutrino, Phys. Rev. 105 (1957) 1671 [INSPIRE].
S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general interactions, Phys. Rev. D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE].
M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097 [arXiv:1612.04150] [INSPIRE].
COHERENT collaboration, COHERENT 2018 at the Spallation Neutron Source, arXiv:1803.09183 [INSPIRE].
G. Rich, private communication.
M. Dentler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].
I.K. Baldry and K. Glazebrook, Constraints on a universal IMF from UV to near-IR galaxy luminosity densities, Astrophys. J. 593 (2003) 258 [astro-ph/0304423] [INSPIRE].
H.-Y. Cheng, Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons, Phys. Lett. B 219 (1989) 347 [INSPIRE].
M. Anselmino et al., Update on transversity and Collins functions from SIDIS and e + e − data, Nucl. Phys. Proc. Suppl. 191 (2009) 98 [arXiv:0812.4366] [INSPIRE].
A. Courtoy, S. Baeßler, M. González-Alonso and S. Liuti, Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology, Phys. Rev. Lett. 115 (2015) 162001 [arXiv:1503.06814] [INSPIRE].
G.R. Goldstein, J.O. Gonzalez Hernandez and S. Liuti, Flavor dependence of chiral odd generalized parton distributions and the tensor charge from the analysis of combined π 0 and η exclusive electroproduction data, arXiv:1401.0438 [INSPIRE].
M. Radici, A. Courtoy, A. Bacchetta and M. Guagnelli, Improved extraction of valence transversity distributions from inclusive dihadron production, JHEP 05 (2015) 123 [arXiv:1503.03495] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1902.07398
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Sierra, D.A., Liao, J. & Marfatia, D. Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data. J. High Energ. Phys. 2019, 141 (2019). https://doi.org/10.1007/JHEP06(2019)141
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2019)141