Abstract
We investigate neutrinoless double beta decay (0νββ) in the presence of sterile neutrinos with Majorana mass terms. These gauge-singlet fields are allowed to interact with Standard-Model (SM) fields via renormalizable Yukawa couplings as well as higher-dimensional gauge-invariant operators up to dimension seven in the Standard Model Effective Field Theory extended with sterile neutrinos. At the GeV scale, we use Chiral effective field theory involving sterile neutrinos to connect the operators at the level of quarks and gluons to hadronic interactions involving pions and nucleons. This allows us to derive an expression for 0νββ rates for various isotopes in terms of phase-space factors, hadronic low-energy constants, nuclear matrix elements, the neutrino masses, and the Wilson coefficients of higher-dimensional operators. The required hadronic low-energy constants and nuclear matrix elements depend on the neutrino masses, for which we obtain interpolation formulae grounded in QCD and chiral perturbation theory that improve existing formulae that are only valid in a small regime of neutrino masses. The resulting framework can be used directly to assess the impact of 0νββ experiments on scenarios with light sterile neutrinos and should prove useful in global analyses of sterile-neutrino searches. We per- form several phenomenological studies of 0νββ in the presence of sterile neutrinos with and without higher-dimensional operators. We find that non-standard interactions involving sterile neutrinos have a dramatic impact on 0νββ phenomenology, and next-generation experiments can probe such interactions up to scales of \( \mathcal{O} \) (100) TeV.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C. Arnaboldi et al., A Calorimetric search on double beta decay of Te-130, Phys. Lett. B 557 (2003) 167 [hep-ex/0211071] [INSPIRE].
S. Umehara et al., Neutrino-less double-beta decay of Ca-48 studied by Ca F(2)(Eu) scintillators, Phys. Rev. C 78 (2008) 058501 [arXiv:0810.4746] [INSPIRE].
NEMO collaboration, Investigation of double beta decay with the NEMO-3 detector, Phys. Atom. Nucl. 74 (2011) 312 [arXiv:1002.2862] [INSPIRE].
KamLAND-Zen collaboration, Limit on Neutrinoless ββ Decay of 136 Xe from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in 76 Ge, Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].
GERDA collaboration, Results on Neutrinoless Double-β Decay of 76 Ge from Phase I of the GERDA Experiment, Phys. Rev. Lett. 111 (2013) 122503 [arXiv:1307.4720] [INSPIRE].
EXO-200 collaboration, Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
SNO+ collaboration, Current Status and Future Prospects of the SNO+ Experiment, Adv. High Energy Phys. 2016 (2016) 6194250 [arXiv:1508.05759] [INSPIRE].
NEMO-3 collaboration, Results of the search for neutrinoless double-β decay in 100 Mo with the NEMO-3 experiment, Phys. Rev. D 92 (2015) 072011 [arXiv:1506.05825] [INSPIRE].
NEMO-3 collaboration, Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48 Ca with the NEMO-3 detector, Phys. Rev. D 93 (2016) 112008 [arXiv:1604.01710] [INSPIRE].
KamLAND-Zen collaboration, Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
S.R. Elliott et al., Initial Results from the Majorana Demonstrator, J. Phys. Conf. Ser. 888 (2017) 012035 [arXiv:1610.01210] [INSPIRE].
NEMO-3 collaboration, Measurement of the 2νββ decay half-life of 150 Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector, Phys. Rev. D 94 (2016) 072003 [arXiv:1606.08494] [INSPIRE].
NEMO-3 collaboration, Measurement of the 2νββ Decay Half-Life and Search for the 0νββ Decay of 116 Cd with the NEMO-3 Detector, Phys. Rev. D 95 (2017) 012007 [arXiv:1610.03226] [INSPIRE].
M. Agostini et al., Background-free search for neutrinoless double-β decay of 76 Ge with GERDA, arXiv:1703.00570 [INSPIRE].
Majorana collaboration, Search for Neutrinoless Double-β Decay in 76 Ge with the Majorana Demonstrator, Phys. Rev. Lett. 120 (2018) 132502 [arXiv:1710.11608] [INSPIRE].
EXO collaboration, Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701 [arXiv:1707.08707] [INSPIRE].
CUORE collaboration, First Results from CUORE: A Search for Lepton Number Violation via 0νββ Decay of 130 Te, Phys. Rev. Lett. 120 (2018) 132501 [arXiv:1710.07988] [INSPIRE].
GERDA collaboration, Improved Limit on Neutrinoless Double-β Decay of 76 Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503 [arXiv:1803.11100] [INSPIRE].
CUPID-0 collaboration, First Result on the Neutrinoless Double-β Decay of 82 Se with CUPID-0, Phys. Rev. Lett. 120 (2018) 232502 [arXiv:1802.07791] [INSPIRE].
R. Arnold et al., Final results on 82 Se double beta decay to the ground state of 82 K r from the NEMO-3 experiment, Eur. Phys. J. C 78 (2018) 821 [arXiv:1806.05553] [INSPIRE].
CUORE collaboration, Improved Limit on Neutrinoless Double-Beta Decay in 130 Te with CUORE, Phys. Rev. Lett. 124 (2020) 122501 [arXiv:1912.10966] [INSPIRE].
Majorana collaboration, A Search for Neutrinoless Double-Beta Decay in 76 Ge with 26 kg-yr of Exposure from the Majorana Demonstrator, Phys. Rev. C 100 (2019) 025501 [arXiv:1902.02299] [INSPIRE].
K. Tetsuno et al., Status of 48 C a double beta decay search and its future prospect in CANDLES, J. Phys. Conf. Ser. 1468 (2020) 012132 [INSPIRE].
GERDA collaboration, Probing Majorana neutrinos with double-β decay, Science 365 (2019) 1445 [arXiv:1909.02726] [INSPIRE].
CUPID collaboration, Final result of CUPID-0 phase-I in the search for the 82 Se Neutrinoless Double-β Decay, Phys. Rev. Lett. 123 (2019) 032501 [arXiv:1906.05001] [INSPIRE].
V. Alenkov et al., First Results from the AMoRE-Pilot neutrinoless double beta decay experiment, Eur. Phys. J. C 79 (2019) 791 [arXiv:1903.09483] [INSPIRE].
EXO-200 collaboration, Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset, Phys. Rev. Lett. 123 (2019) 161802 [arXiv:1906.02723] [INSPIRE].
T. Iida et al., The CANDLES experiment for the study of Ca-48 double beta decay, Nucl. Part. Phys. Proc. 273-275 (2016) 2633 [INSPIRE].
LEGEND collaboration, The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND), AIP Conf. Proc. 1894 (2017) 020027 [arXiv:1709.01980] [INSPIRE].
C. Patrick and F. Xie, Status of the SuperNEMO 0νββ experiment, in Proceedings, Prospects in Neutrino Physics (NuPhys2016), London, U.K., 12–14 December 2016 (2017) [arXiv:1704.06670] [INSPIRE].
A. Salvio and F. Sannino eds., From the Fermi Scale to Cosmology, Front. Astron. Space Sci. (2019) [http://www.desy.de/∼schwenn/9782889632053-1.PDF].
CUORE collaboration, Update on the recent progress of the CUORE experiment, in 28th International Conference on Neutrino Physics and Astrophysics (Neutrino 2018), Heidelberg, Germany, 4–9 June 2018 (2018) [10.5281/zenodo.1286904] [arXiv:1808.10342] [INSPIRE].
SNO+ collaboration, Neutrinoless Double Beta Decay in the SNO+ Experiment, in Proceedings, Prospects in Neutrino Physics (NuPhys2018), London, U.K., 19–21 December 2018 (2019) [arXiv:1904.01418] [INSPIRE].
nEXO collaboration, Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay, Phys. Rev. C 97 (2018) 065503 [arXiv:1710.05075] [INSPIRE].
J.J. Gomez-Cadenas, Status and prospects of the NEXT experiment for neutrinoless double beta decay searches, 2019, arXiv:1906.01743 [INSPIRE].
PandaX-III collaboration, PandaX-III: Searching for Neutrinoless Double Beta Decay with High Pressure Gaseous Time Projection Chambers, J. Phys. Conf. Ser. 1342 (2020) 012095 [arXiv:1710.08908] [INSPIRE].
CUPID collaboration, CUPID pre-CDR, arXiv:1907.09376 [INSPIRE].
A. Kobach, Baryon Number, Lepton Number and Operator Dimension in the Standard Model, Phys. Lett. B 758 (2016) 455 [arXiv:1604.05726] [INSPIRE].
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].
P. Minkowski, μ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. 67B (1977) 421 [INSPIRE].
M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].
A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. 93B (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
A. Zee, Quantum Numbers of Majorana Neutrino Masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].
K.S. Babu, Model of ‘Calculable’ Majorana Neutrino Masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].
K.S. Babu and E. Ma, Natural Hierarchy of Radiatively Induced Majorana Neutrino Masses, Phys. Rev. Lett. 61 (1988) 674 [INSPIRE].
K.S. Babu, E. Ma and J.T. Pantaleone, Model of Radiative Neutrino Masses: Mixing and a Possible Fourth Generation, Phys. Lett. B 218 (1989) 233 [INSPIRE].
K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
D. Meloni, GUT and flavor models for neutrino masses and mixing, Front. in Phys. 5 (2017) 43 [arXiv:1709.02662] [INSPIRE].
V. Cirigliano, W. Dekens, J. de Vries, M.L. Graesser and E. Mereghetti, Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven, JHEP 12 (2017) 082 [arXiv:1708.09390] [INSPIRE].
V. Cirigliano, W. Dekens, J. de Vries, M.L. Graesser and E. Mereghetti, A neutrinoless double beta decay master formula from effective field theory, JHEP 12 (2018) 097 [arXiv:1806.02780] [INSPIRE].
H. Pas, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Towards a superformula for neutrinoless double beta decay, Phys. Lett. B 453 (1999) 194 [INSPIRE].
H. Pas, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A Superformula for neutrinoless double beta decay. 2. The Short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [INSPIRE].
L. Graf, F.F. Deppisch, F. Iachello and J. Kotila, Short-Range Neutrinoless Double Beta Decay Mechanisms, Phys. Rev. D 98 (2018) 095023 [arXiv:1806.06058] [INSPIRE].
J. Ghiglieri and M. Laine, GeV-scale hot sterile neutrino oscillations: a derivation of evolution equations, JHEP 05 (2017) 132 [arXiv:1703.06087] [INSPIRE].
P. Hernández, M. Kekic, J. López-Pavón, J. Racker and J. Salvado, Testable Baryogenesis in Seesaw Models, JHEP 08 (2016) 157 [arXiv:1606.06719] [INSPIRE].
E.K. Akhmedov, V.A. Rubakov and A.Yu. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].
T. Asaka, S. Blanchet and M. Shaposhnikov, The nuMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].
T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].
M. Shaposhnikov, A Possible symmetry of the nuMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].
L. Canetti, M. Drewes and M. Shaposhnikov, Sterile Neutrinos as the Origin of Dark and Baryonic Matter, Phys. Rev. Lett. 110 (2013) 061801 [arXiv:1204.3902] [INSPIRE].
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile Neutrino Dark Matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].
M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025 [arXiv:1602.04816] [INSPIRE].
S. Böser et al., Status of Light Sterile Neutrino Searches, Prog. Part. Nucl. Phys. 111 (2020) 103736 [arXiv:1906.01739] [INSPIRE].
M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [INSPIRE].
M. Mitra, G. Senjanović and F. Vissani, Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].
Y.F. Li and S.-s. Liu, Vanishing effective mass of the neutrinoless double beta decay including light sterile neutrinos, Phys. Lett. B 706 (2012) 406 [arXiv:1110.5795] [INSPIRE].
A. de Gouvêa and W.-C. Huang, Constraining the (Low-Energy) Type-I Seesaw, Phys. Rev. D 85 (2012) 053006 [arXiv:1110.6122] [INSPIRE].
J. Barea, J. Kotila and F. Iachello, Limits on sterile neutrino contributions to neutrinoless double beta decay, Phys. Rev. D 92 (2015) 093001 [arXiv:1509.01925] [INSPIRE].
C. Giunti and E.M. Zavanin, Predictions for Neutrinoless Double-Beta Decay in the 3+1 Sterile Neutrino Scenario, JHEP 07 (2015) 171 [arXiv:1505.00978] [INSPIRE].
T. Asaka, S. Eijima and H. Ishida, Mixing of Active and Sterile Neutrinos, JHEP 04 (2011) 011 [arXiv:1101.1382] [INSPIRE].
T. Asaka and S. Eijima, Direct Search for Right-handed Neutrinos and Neutrinoless Double Beta Decay, PTEP 2013 (2013) 113B02 [arXiv:1308.3550] [INSPIRE].
T. Asaka, S. Eijima and H. Ishida, On neutrinoless double beta decay in the νMSM, Phys. Lett. B 762 (2016) 371 [arXiv:1606.06686] [INSPIRE].
F. del Aguila, S. Bar-Shalom, A. Soni and J. Wudka, Heavy Majorana Neutrinos in the Effective Lagrangian Description: Application to Hadron Colliders, Phys. Lett. B 670 (2009) 399 [arXiv:0806.0876] [INSPIRE].
V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP 02 (2013) 046 [arXiv:1210.4553] [INSPIRE].
Y. Liao and X.-D. Ma, Operators up to Dimension Seven in Standard Model Effective Field Theory Extended with Sterile Neutrinos, Phys. Rev. D 96 (2017) 015012 [arXiv:1612.04527] [INSPIRE].
J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].
G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].
P. Fileviez Perez and M.B. Wise, Low Scale Quark-Lepton Unification, Phys. Rev. D 88 (2013) 057703 [arXiv:1307.6213] [INSPIRE].
I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].
B. Grinstein, V. Cirigliano, G. Isidori and M.B. Wise, Grand Unification and the Principle of Minimal Flavor Violation, Nucl. Phys. B 763 (2007) 35 [hep-ph/0608123] [INSPIRE].
J. Alcaide, S. Banerjee, M. Chala and A. Titov, Probes of the Standard Model effective field theory extended with a right-handed neutrino, JHEP 08 (2019) 031 [arXiv:1905.11375] [INSPIRE].
J.M. Butterworth, M. Chala, C. Englert, M. Spannowsky and A. Titov, Higgs phenomenology as a probe of sterile neutrinos, Phys. Rev. D 100 (2019) 115019 [arXiv:1909.04665] [INSPIRE].
A. Caputo, P. Hernández, J. Lopez-Pavon and J. Salvado, The seesaw portal in testable models of neutrino masses, JHEP 06 (2017) 112 [arXiv:1704.08721] [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].
Y. Liao and X.-D. Ma, Renormalization Group Evolution of Dimension-seven Baryon- and Lepton-number-violating Operators, JHEP 11 (2016) 043 [arXiv:1607.07309] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
M.L. Graesser, An electroweak basis for neutrinoless double β decay, JHEP 08 (2017) 099 [arXiv:1606.04549] [INSPIRE].
G. Prezeau, M. Ramsey-Musolf and P. Vogel, Neutrinoless double beta decay and effective field theory, Phys. Rev. D 68 (2003) 034016 [hep-ph/0303205] [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
M. Chala and A. Titov, One-loop matching in the SMEFT extended with a sterile neutrino, JHEP 05 (2020) 139 [arXiv:2001.07732] [INSPIRE].
V. Cirigliano, S. Gardner and B. Holstein, Beta Decays and Non-Standard Interactions in the LHC Era, Prog. Part. Nucl. Phys. 71 (2013) 93 [arXiv:1303.6953] [INSPIRE].
A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].
A.J. Buras, S. Jager and J. Urban, Master formulae for Delta F=2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].
J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].
E.E. Jenkins and A.V. Manohar, Baryon chiral perturbation theory using a heavy fermion Lagrangian, Phys. Lett. B 255 (1991) 558 [INSPIRE].
V. Bernard, N. Kaiser and U.-G. Meissner, Chiral dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 4 (1995) 193 [hep-ph/9501384] [INSPIRE].
A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
V. Cirigliano, W. Dekens, E. Mereghetti and A. Walker-Loud, Neutrinoless double-β decay in effective field theory: The light-Majorana neutrino-exchange mechanism, Phys. Rev. C 97 (2018) 065501 [Erratum ibid. C 100 (2019) 019903] [arXiv:1710.01729] [INSPIRE].
H.W. Hammer, S. König and U. van Kolck, Nuclear effective field theory: status and perspectives, arXiv:1906.12122 [INSPIRE].
M. Pavón Valderrama and D.R. Phillips, Power Counting of Contact-Range Currents in Effective Field Theory, Phys. Rev. Lett. 114 (2015) 082502 [arXiv:1407.0437] [INSPIRE].
V. Cirigliano et al., New Leading Contribution to Neutrinoless Double-β Decay, Phys. Rev. Lett. 120 (2018) 202001 [arXiv:1802.10097] [INSPIRE].
V. Cirigliano et al., Renormalized approach to neutrinoless double- β decay, Phys. Rev. C 100 (2019) 055504 [arXiv:1907.11254] [INSPIRE].
J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
M. González-Alonso and J. Martin Camalich, Isospin breaking in the nucleon mass and the sensitivity of β decays to new physics, Phys. Rev. Lett. 112 (2014) 042501 [arXiv:1309.4434] [INSPIRE].
J. Menendez, A. Poves, E. Caurier and F. Nowacki, Disassembling the Nuclear Matrix Elements of the Neutrinoless beta beta Decay, Nucl. Phys. A 818 (2009) 139 [arXiv:0801.3760] [INSPIRE].
A. Nicholson et al., Heavy physics contributions to neutrinoless double beta decay from QCD, Phys. Rev. Lett. 121 (2018) 172501 [arXiv:1805.02634] [INSPIRE].
T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, H.-W. Lin and B. Yoon, Axial, Scalar and Tensor Charges of the Nucleon from 2+1+1-flavor Lattice QCD, Phys. Rev. D 94 (2016) 054508 [arXiv:1606.07049] [INSPIRE].
R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano and T. Bhattacharya, Isovector Charges of the Nucleon from 2+1+1-flavor Lattice QCD, Phys. Rev. D 98 (2018) 034503 [arXiv:1806.09006] [INSPIRE].
Flavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
H. Monge-Camacho et al., Short Range Operator Contributions to 0νββ decay from LQCD, PoS(LATTICE2018)263 (2019) [arXiv:1904.12055] [INSPIRE].
S. Pastore, J. Carlson, V. Cirigliano, W. Dekens, E. Mereghetti and R.B. Wiringa, Neutrinoless double-β decay matrix elements in light nuclei, Phys. Rev. C 97 (2018) 014606 [arXiv:1710.05026] [INSPIRE].
J. Hyvärinen and J. Suhonen, Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange, Phys. Rev. C 91 (2015) 024613 [INSPIRE].
J. Menéndez, Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: The role of nuclear structure correlations, J. Phys. G 45 (2018) 014003 [arXiv:1804.02105] [INSPIRE].
J. Barea, J. Kotila and F. Iachello, 0νββ and 2νββ nuclear matrix elements in the interacting boson model with isospin restoration, Phys. Rev. C 91 (2015) 034304 [arXiv:1506.08530] [INSPIRE].
J. Barea, private communication.
Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
M. Horoi and A. Neacsu, Towards an effective field theory approach to the neutrinoless double-beta decay, arXiv:1706.05391 [INSPIRE].
S. Stoica and M. Mirea, New calculations for phase space factors involved in double-β decay, Phys. Rev. C 88 (2013) 037303 [arXiv:1307.0290] [INSPIRE].
M. Doi, T. Kotani and E. Takasugi, Double beta Decay and Majorana Neutrino, Prog. Theor. Phys. Suppl. 83 (1985) 1 [INSPIRE].
J. Kotila and F. Iachello, Phase space factors for double-β decay, Phys. Rev. C 85 (2012) 034316 [arXiv:1209.5722] [INSPIRE].
D. Stefanik, R. Dvornicky, F. Simkovic and P. Vogel, Reexamining the light neutrino exchange mechanism of the 0νββ decay with left- and right-handed leptonic and hadronic currents, Phys. Rev. C 92 (2015) 055502 [arXiv:1506.07145] [INSPIRE].
M. Knecht, S. Peris and E. de Rafael, The Electroweak π+ − π0 mass difference and weak matrix elements in the 1/Nc expansion, Phys. Lett. B 443 (1998) 255 [hep-ph/9809594] [INSPIRE].
E. Braaten, S. Narison and A. Pich, QCD analysis of the tau hadronic width, Nucl. Phys. B 373 (1992) 581 [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
USQCD collaboration, The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics, Eur. Phys. J. A 55 (2019) 197 [arXiv:1904.09704] [INSPIRE].
C. Drischler et al., Towards grounding nuclear physics in QCD, 2019, arXiv:1910.07961 [INSPIRE].
X. Feng, L.-C. Jin, X.-Y. Tuo and S.-C. Xia, Light-Neutrino Exchange and Long-Distance Contributions to 0ν2β Decays: An Exploratory Study on ππ → ee, Phys. Rev. Lett. 122 (2019) 022001 [arXiv:1809.10511] [INSPIRE].
X.-Y. Tuo, X. Feng and L.-C. Jin, Long-distance contributions to neutrinoless double beta decay π− → π+ ee, Phys. Rev. D 100 (2019) 094511 [arXiv:1909.13525] [INSPIRE].
W. Detmold and D. Murphy, Nuclear Matrix Elements for Neutrinoless Double Beta Decay from Lattice QCD, PoS(LATTICE2018)262 (2019) [arXiv:1811.05554] [INSPIRE].
J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: Models and Phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].
K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].
J.C. Helo, M. Hirsch and Z.S. Wang, Heavy neutral fermions at the high-luminosity LHC, JHEP 07 (2018) 056 [arXiv:1803.02212] [INSPIRE].
M. Chrzaszcz, M. Drewes, T.E. Gonzalo, J. Harz, S. Krishnamurthy and C. Weniger, A frequentist analysis of three right-handed neutrinos with GAMBIT, arXiv:1908.02302 [INSPIRE].
P.D. Bolton, F.F. Deppisch and P.S. Bhupal Dev, Neutrinoless double beta decay versus other probes of heavy sterile neutrinos, JHEP 03 (2020) 170 [arXiv:1912.03058] [INSPIRE].
D.A. Bryman and R. Shrock, Constraints on Sterile Neutrinos in the MeV to GeV Mass Range, Phys. Rev. D 100 (2019) 073011 [arXiv:1909.11198] [INSPIRE].
C. Giunti and T. Lasserre, eV-scale Sterile Neutrinos, Ann. Rev. Nucl. Part. Sci. 69 (2019) 163 [arXiv:1901.08330] [INSPIRE].
A. Donini, P. Hernández, J. Lopez-Pavon, M. Maltoni and T. Schwetz, The minimal 3+2 neutrino model versus oscillation anomalies, JHEP 07 (2012) 161 [arXiv:1205.5230] [INSPIRE].
U. Mahanta, Neutrino masses and mixing angles from leptoquark interactions, Phys. Rev. D 62 (2000) 073009 [hep-ph/9909518] [INSPIRE].
D. Aristizabal Sierra, M. Hirsch and S.G. Kovalenko, Leptoquarks: Neutrino masses and accelerator phenomenology, Phys. Rev. D 77 (2008) 055011 [arXiv:0710.5699] [INSPIRE].
K.S. Babu, P.S.B. Dev, S. Jana and A. Thapa, Non-Standard Interactions in Radiative Neutrino Mass Models, JHEP 03 (2020) 006 [arXiv:1907.09498] [INSPIRE].
LSND collaboration, Evidence for neutrino oscillations from the observation of \( {\overline{v}}_e \)appearance in a \( {\overline{v}}_{\mu } \)beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
MiniBooNE collaboration, Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].
MiniBooNE collaboration, Improved Search for \( {\overline{v}}_{\mu } \)→ \( {\overline{v}}_e \)Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1303.2588] [INSPIRE].
MiniBooNE collaboration, Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment, Phys. Rev. Lett. 121 (2018) 221801 [arXiv:1805.12028] [INSPIRE].
M. Dentler et al., Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos, JHEP 08 (2018) 010 [arXiv:1803.10661] [INSPIRE].
K. Abazajian, G.M. Fuller and M. Patel, Sterile neutrino hot, warm and cold dark matter, Phys. Rev. D 64 (2001) 023501 [astro-ph/0101524] [INSPIRE].
A. Kusenko, Sterile neutrinos: The Dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].
CMS collaboration, Search for pair production of first-generation scalar leptoquarks at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 052002 [arXiv:1811.01197] [INSPIRE].
ATLAS collaboration, Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, Eur. Phys. J. C 79 (2019) 733 [arXiv:1902.00377] [INSPIRE].
ATLAS collaboration, Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 016 [arXiv:1809.11105] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2002.07182
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Dekens, W., de Vries, J., Fuyuto, K. et al. Sterile neutrinos and neutrinoless double beta decay in effective field theory. J. High Energ. Phys. 2020, 97 (2020). https://doi.org/10.1007/JHEP06(2020)097
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2020)097