Abstract
We consider the entanglement entropy of an arbitrary subregion in a system of N non-relativistic fermions in 2+1 dimensions in Lowest Landau Level (LLL) states. Using the connection of these states to those of an auxiliary 1 + 1 dimensional fermionic system, we derive an expression for the leading large-N contribution in terms of the expectation value of the phase space density operator in 1 + 1 dimensions. For appropriate subregions the latter can replaced by its semiclassical Thomas-Fermi value, yielding expressions in terms of explicit integrals which can be evaluated analytically. We show that the leading term in the entanglement entropy is a perimeter law with a shape independent coefficient. Furthermore, we obtain analytic expressions for additional contributions from sharp corners on the entangling curve. Both the perimeter and the corner pieces are in good agreement with existing calculations for special subregions. Our results are relevant to the integer quantum Hall effect problem, and to the half-BPS sector of \( \mathcal{N} \) = 4 Yang Mills theory on S3. In this latter context, the entanglement we consider is an entanglement in target space. We comment on possible implications to gauge-gravity duality.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Change history
17 August 2023
An Erratum to this paper has been published: https://doi.org/10.1007/JHEP08(2023)095
References
L. Spruch, Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars, and the stability of bulk matter, Rev. Mod. Phys. 63 (1991) 151 [INSPIRE].
D.S. Dean, P. Le Doussal, S.N. Majumdar and G. Schehr, Noninteracting fermions at finite temperature in a d-dimensional trap: universal correlations, Phys. Rev. A 94 (2016) 063622 [arXiv:1609.04366] [INSPIRE].
E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].
J. Polchinski, Classical limit of (1 + 1)-dimensional string theory, Nucl. Phys. B 362 (1991) 125 [INSPIRE].
A. Jevicki and B. Sakita, The quantum collective field method and its application to the planar limit, Nucl. Phys. B 165 (1980) 511 [INSPIRE].
S.R. Das, A. Dhar, G. Mandal and S.R. Wadia, Bosonization of nonrelativistic fermions and W-infinity algebra, Mod. Phys. Lett. A 7 (1992) 71 [hep-th/9111021] [INSPIRE].
A. Dhar, G. Mandal and S.R. Wadia, Classical Fermi fluid and geometric action for c = 1, Int. J. Mod. Phys. A 8 (1993) 325 [hep-th/9204028] [INSPIRE].
A. Dhar, G. Mandal and S.R. Wadia, Nonrelativistic fermions, coadjoint orbits of W∞ and string field theory at c = 1, Mod. Phys. Lett. A 7 (1992) 3129 [hep-th/9207011] [INSPIRE].
A. Dhar, G. Mandal and S.R. Wadia, W∞ coherent states and path integral derivation of bosonization of nonrelativistic fermions in one-dimension, Mod. Phys. Lett. A 8 (1993) 3557 [hep-th/9309028] [INSPIRE].
I. Klich and L. Levitov, Quantum noise as an entanglement meter, Phys. Rev. Lett. 102 (2009) 100502 [arXiv:0804.1377] [INSPIRE].
H.F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie and K. Le Hur, Bipartite fluctuations as a probe of many-body entanglement, Phys. Rev. B 85 (2012) 035409 [arXiv:1109.1001] [INSPIRE].
I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A 36 (2003) L205.
A. Petrescu et al., Fluctuations and entanglement spectrum in quantum hall states, J. Stat. Mech. 2014 (2014) P10005 [arXiv:1405.7816].
P. Calabrese, M. Mintchev and E. Vicari, Exact relations between particle fluctuations and entanglement in Fermi gases, EPL 98 (2012) 20003 [arXiv:1111.4836] [INSPIRE].
P. Calabrese, P.L. Doussal and S.N. Majumdar, Random matrices and entanglement entropy of trapped Fermi gases, Phys. Rev. A 91 (2015) 012303.
N.R. Smith, P. Le Doussal, S.N. Majumdar and G. Schehr, Counting statistics for noninteracting fermions in a d-dimensional potential, Phys. Rev. E 103 (2021) L030105 [arXiv:2008.01045] [INSPIRE].
F.D. Cunden, S.N. Majumdar and N. O’Connell, Free fermions and α-determinantal processes, J. Phys. A 52 (2019) 165202 [arXiv:1811.11556].
S.R. Das, S. Hampton and S. Liu, Quantum quench in non-relativistic fermionic field theory: harmonic traps and 2d string theory, JHEP 08 (2019) 176 [arXiv:1903.07682] [INSPIRE].
S.R. Das, S. Hampton and S. Liu, Quantum quench in c = 1 matrix model and emergent space-times, JHEP 04 (2020) 107 [arXiv:1910.00123] [INSPIRE].
D. Tong, Lectures on the quantum Hall effect, arXiv:1606.06687 [INSPIRE].
S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].
D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].
Y. Takayama and A. Tsuchiya, Complex matrix model and fermion phase space for bubbling AdS geometries, JHEP 10 (2005) 004 [hep-th/0507070] [INSPIRE].
A. Ghodsi, A.E. Mosaffa, O. Saremi and M.M. Sheikh-Jabbari, LLL vs. LLM: half BPS sector of N = 4 SYM equals to quantum Hall system, Nucl. Phys. B 729 (2005) 467 [hep-th/0505129] [INSPIRE].
A. Jevicki, Nonperturbative collective field theory, Nucl. Phys. B 376 (1992) 75 [INSPIRE].
A. Donos, A. Jevicki and J.P. Rodrigues, Matrix model maps in AdS/CFT, Phys. Rev. D 72 (2005) 125009 [hep-th/0507124] [INSPIRE].
A.V. Ryzhov, Quarter BPS operators in N = 4 SYM, JHEP 11 (2001) 046 [hep-th/0109064] [INSPIRE].
G. Mandal and N.V. Suryanarayana, Counting 1/8-BPS dual-giants, JHEP 03 (2007) 031 [hep-th/0606088] [INSPIRE].
S.R. Das, A. Kaushal, G. Mandal and S.P. Trivedi, Bulk entanglement entropy and matrices, J. Phys. A 53 (2020) 444002 [arXiv:2004.00613] [INSPIRE].
S.R. Das, A. Kaushal, S. Liu, G. Mandal and S.P. Trivedi, Gauge invariant target space entanglement in D-brane holography, JHEP 04 (2021) 225 [arXiv:2011.13857] [INSPIRE].
E.A. Mazenc and D. Ranard, Target space entanglement entropy, arXiv:1910.07449 [INSPIRE].
H.R. Hampapura, J. Harper and A. Lawrence, Target space entanglement in matrix models, JHEP 10 (2021) 231 [arXiv:2012.15683] [INSPIRE].
S. Sugishita, Target space entanglement in quantum mechanics of fermions and matrices, JHEP 08 (2021) 046 [arXiv:2105.13726] [INSPIRE].
A. Frenkel and S.A. Hartnoll, Entanglement in the quantum Hall matrix model, JHEP 05 (2022) 130 [arXiv:2111.05967] [INSPIRE].
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].
N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].
T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].
S.R. Das, Geometric entropy of nonrelativistic fermions and two-dimensional strings, Phys. Rev. D 51 (1995) 6901 [hep-th/9501090] [INSPIRE].
S.R. Das, Degrees of freedom in two-dimensional string theory, Nucl. Phys. B Proc. Suppl. 45BC (1996) 224 [hep-th/9511214] [INSPIRE].
S.A. Hartnoll and E. Mazenc, Entanglement entropy in two dimensional string theory, Phys. Rev. Lett. 115 (2015) 121602 [arXiv:1504.07985] [INSPIRE].
J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].
M.T. Grisaru, R.C. Myers and O. Tafjord, SUSY and goliath, JHEP 08 (2000) 040 [hep-th/0008015] [INSPIRE].
A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [INSPIRE].
H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].
G. Mandal, Fermions from half-BPS supergravity, JHEP 08 (2005) 052 [hep-th/0502104] [INSPIRE].
L. Grant, L. Maoz, J. Marsano, K. Papadodimas and V.S. Rychkov, Minisuperspace quantization of ‘bubbling AdS’ and free fermion droplets, JHEP 08 (2005) 025 [hep-th/0505079] [INSPIRE].
L. Maoz and V.S. Rychkov, Geometry quantization from supergravity: the case of ‘bubbling AdS’, JHEP 08 (2005) 096 [hep-th/0508059] [INSPIRE].
N.V. Suryanarayana, Half-BPS giants, free fermions and microstates of superstars, JHEP 01 (2006) 082 [hep-th/0411145] [INSPIRE].
V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [INSPIRE].
K. Skenderis and M. Taylor, Anatomy of bubbling solutions, JHEP 09 (2007) 019 [arXiv:0706.0216] [INSPIRE].
L. Charles and B. Estienne, Entanglement entropy and Berezin-Toeplitz operators, Commun. Math. Phys. 376 (2019) 521.
I.D. Rodríguez and G. Sierra, Entanglement entropy of integer quantum hall states, Phys. Rev. B 80 (2009) 153303 [arXiv:0811.2188].
I.D. Rodriguez and G. Sierra, Entanglement entropy of integer quantum Hall states in polygonal domains, J. Stat. Mech. 1012 (2010) P12033 [arXiv:1007.5356] [INSPIRE].
B. Sirois, L.M. Fournier, J. Leduc and W. Witczak-Krempa, Geometric entanglement in integer quantum Hall states, Phys. Rev. B 103 (2021) 115115 [arXiv:2009.02337] [INSPIRE].
P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].
P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].
T. Faulkner, R.G. Leigh and O. Parrikar, Shape dependence of entanglement entropy in conformal field theories, JHEP 04 (2016) 088 [arXiv:1511.05179] [INSPIRE].
M. Alishahiha, A.F. Astaneh, P. Fonda and F. Omidi, Entanglement entropy for singular surfaces in hyperscaling violating theories, JHEP 09 (2015) 172 [arXiv:1507.05897] [INSPIRE].
B. Estienne, J.-M. Stéphan and W. Witczak-Krempa, Cornering the universal shape of fluctuations, Nature Commun. 13 (2022) 287 [arXiv:2102.06223] [INSPIRE].
S. Cremonini, R. de Mello Koch and A. Jevicki, Matrix model maps and reconstruction of AdS SUGRA interactions, Phys. Rev. D 77 (2008) 105005 [arXiv:0712.4366] [INSPIRE].
M. Hanada, Bulk geometry in gauge/gravity duality and color degrees of freedom, Phys. Rev. D 103 (2021) 106007 [arXiv:2102.08982] [INSPIRE].
M. Hanada, Large-N limit as a second quantization, arXiv:2103.15873 [INSPIRE].
V.P. Nair, Entanglement for quantum Hall states and a generalized Chern-Simons form, Phys. Rev. D 101 (2020) 125021 [arXiv:2001.04957] [INSPIRE].
D. Karabali, Entanglement entropy for integer quantum Hall effect in two and higher dimensions, Phys. Rev. D 102 (2020) 025016 [arXiv:2006.10920] [INSPIRE].
S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological entanglement entropy in Chern-Simons theories and quantum Hall fluids, JHEP 05 (2008) 016 [arXiv:0802.3231] [INSPIRE].
J.R. Fliss et al., Interface contributions to topological entanglement in Abelian Chern-Simons theory, JHEP 09 (2017) 056 [arXiv:1705.09611] [INSPIRE].
A. Jevicki, O. Karim, J.P. Rodrigues and H. Levine, Loop space Hamiltonians and numerical methods for large N gauge theories, Nucl. Phys. B 213 (1983) 169 [INSPIRE].
R.d.M. Koch, A. Jevicki, X. Liu, K. Mathaba and J.P. Rodrigues, Large N optimization for multi-matrix systems, JHEP 01 (2022) 168 [arXiv:2108.08803] [INSPIRE].
P. Caputa, R. de Mello Koch and K. Zoubos, Extremal versus non-extremal correlators with giant gravitons, JHEP 08 (2012) 143 [arXiv:1204.4172] [INSPIRE].
C.R. Graham and A. Karch, Minimal area submanifolds in AdS × compact, JHEP 04 (2014) 168 [arXiv:1401.7692] [INSPIRE].
A. Mollabashi, N. Shiba and T. Takayanagi, Entanglement between two interacting CFTs and generalized holographic entanglement entropy, JHEP 04 (2014) 185 [arXiv:1403.1393] [INSPIRE].
A. Karch and C.F. Uhlemann, Holographic entanglement entropy and the internal space, Phys. Rev. D 91 (2015) 086005 [arXiv:1501.00003] [INSPIRE].
M.R. Mohammadi Mozaffar and A. Mollabashi, On the entanglement between interacting scalar field theories, JHEP 03 (2016) 015 [arXiv:1509.03829] [INSPIRE].
V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].
V. Balasubramanian, B. Craps, T. De Jonckheere and G. Sárosi, Entanglement versus entwinement in symmetric product orbifolds, JHEP 01 (2019) 190 [arXiv:1806.02871] [INSPIRE].
J. Erdmenger and M. Gerbershagen, Entwinement as a possible alternative to complexity, JHEP 03 (2020) 082 [arXiv:1910.05352] [INSPIRE].
F. Alet, M. Hanada, A. Jevicki and C. Peng, Entanglement and confinement in coupled quantum systems, JHEP 02 (2021) 034 [arXiv:2001.03158] [INSPIRE].
V. Balasubramanian, A. Lawrence, A. Rolph and S. Ross, Entanglement shadows in LLM geometries, JHEP 11 (2017) 159 [arXiv:1704.03448] [INSPIRE].
H. Lin and Y. Zhu, Entanglement and mixed states of Young tableau states in gauge/gravity correspondence, Nucl. Phys. B 972 (2021) 115572 [arXiv:2107.14219] [INSPIRE].
A. Tsuchiya and K. Yamashiro, Target space entanglement in a matrix model for the bubbling geometry, JHEP 04 (2022) 086 [arXiv:2201.06871] [INSPIRE].
B. Lacroix-A-Chez-Toine, S.N. Majumdar and G. Schehr, Rotating trapped fermions in two dimensions and the complex Ginibre ensemble: exact results for the entanglement entropy and number variance, Phys. Rev. A 99 (2019) 021602 [arXiv:1809.05835] [INSPIRE].
M. Kulkarni, S.N. Majumdar and G. Schehr, Multilayered density profile for noninteracting fermions in a rotating two-dimensional trap, Phys. Rev. A 103 (2021) 033321.
N.R. Smith, P. Le Doussal, S.N. Majumdar and G. Schehr, Counting statistics for non-interacting fermions in a rotating trap, arXiv:2112.13355.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2201.08330
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Das, S.R., Hampton, S. & Liu, S. Entanglement entropy and phase space density: lowest Landau levels and 1/2 BPS states. J. High Energ. Phys. 2022, 46 (2022). https://doi.org/10.1007/JHEP06(2022)046
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2022)046