Abstract
We study the implications of the global U(1) R symmetry present in minimal lepton flavor violating implementations of the seesaw mechanism for neutrino masses. In the context of minimal type I seesaw scenarios with a slightly broken U(1) R , we show that, depending on the R-charge assignments, two classes of generic models can be identified. Models where the right-handed neutrino masses and the lepton number breaking scale are decoupled, and models where the parameters that slightly break the U(1) R induce a suppression in the light neutrino mass matrix. We show that within the first class of models, contributions of right-handed neutrinos to charged lepton flavor violating processes are severely suppressed. Within the second class of models we study the charged lepton flavor violating phenomenology in detail, focusing on μ → eγ, μ → 3e and μ − e conversion in nuclei. We show that sizable contributions to these processes are naturally obtained for right-handed neutrino masses at the TeV scale. We then discuss the interplay with the effects of the right-handed neutrino interactions on primordial B − L asymmetries, finding that sizable right-handed neutrino contributions to charged lepton flavor violating processes are incompatible with the requirement of generating (or even preserving preexisting) B − L asymmetries consistent with the observed baryon asymmetry of the Universe.
Similar content being viewed by others
References
T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].
M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of θ 13 > 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].
R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].
L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].
G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].
S. Davidson and F. Palorini, Various definitions of Minimal Flavour Violation for Leptons, Phys. Lett. B 642 (2006) 72 [hep-ph/0607329] [INSPIRE].
M. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].
R. Alonso, G. Isidori, L. Merlo, L.A. Muñoz and E. Nardi, Minimal flavour violation extensions of the seesaw, JHEP 06 (2011) 037 [arXiv:1103.5461] [INSPIRE].
A. Ibarra, E. Molinaro and S. Petcov, TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν -Decay, JHEP 09 (2010) 108 [arXiv:1007.2378] [INSPIRE].
A. Ibarra, E. Molinaro and S. Petcov, Lepton Number Violation in TeV Scale See-Saw Extensions of the Standard Model, J. Phys. Conf. Ser. 335 (2011) 012048 [arXiv:1101.5778] [INSPIRE].
A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].
D. Aristizabal Sierra and C.E. Yaguna, On the importance of the 1-loop finite corrections to seesaw neutrino masses, JHEP 08 (2011) 013 [arXiv:1106.3587] [INSPIRE].
J. Schechter and J. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
J.F. Kamenik and M. Nemevšek, Lepton flavor violation in type-I + III seesaw, JHEP 11 (2009) 023 [arXiv:0908.3451] [INSPIRE].
S. Blanchet, T. Hambye and F.-X. Josse-Michaux, Reconciling leptogenesis with observable μ → eγ rates, JHEP 04 (2010) 023 [arXiv:0912.3153] [INSPIRE].
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
R. Mohapatra and J. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
G. Branco, W. Grimus and L. Lavoura, The Seesaw Mechanism in the Presence of a Conserved Lepton Number, Nucl. Phys. B 312 (1989) 492 [INSPIRE].
A. Abada, C. Biggio, F. Bonnet, M. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].
P.-H. Gu, M. Hirsch, U. Sarkar and J. Valle, Neutrino masses, leptogenesis and dark matter in hybrid seesaw, Phys. Rev. D 79 (2009) 033010 [arXiv:0811.0953] [INSPIRE].
D. Ibáñez, S. Morisi and J. Valle, Inverse tri-bimaximal type-III seesaw and lepton flavor violation, Phys. Rev. D 80 (2009) 053015 [arXiv:0907.3109] [INSPIRE].
D. Forero, S. Morisi, M. Tortola and J. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009] [INSPIRE].
MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].
http://meg.icepp.s.u-tokyo.ac.jp/docs/prop_psi/proposal.pdf.
BABAR collaboration, B. Aubert et al., Searches for Lepton Flavor Violation in the Decays τ ± → e ± γ and τ ± → μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].
A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [INSPIRE].
SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ + → e + e + e −, Nucl. Phys. B 299 (1988) 1 [INSPIRE].
K. Hayasaka et al., Search for Lepton Flavor Violating τ Decays into Three Leptons with 719 Million Produced τ + τ − Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].
http://www.physi.uni-heidelberg.de/Forschung/he/mu3e/documents/LOI_Mu3e_PSI.pdf.
SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in μ → e conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].
SINDRUM II collaboration, W.H. Bertl et al., A Search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].
C. Ankenbrandt et al., Using the Fermilab proton source for a muon to electron conversion experiment, physics/0611124 [INSPIRE].
R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
WMAP collaboration, G. Hinshaw et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps and Basic Results, Astrophys. J. Suppl. 180 (2009) 225 [arXiv:0803.0732] [INSPIRE].
T. Asaka and S. Blanchet, Leptogenesis with an almost conserved lepton number, Phys. Rev. D 78 (2008) 123527 [arXiv:0810.3015] [INSPIRE].
E. Bertuzzo, P. Di Bari, F. Feruglio and E. Nardi, Flavor symmetries, leptogenesis and the absolute neutrino mass scale, JHEP 11 (2009) 036 [arXiv:0908.0161] [INSPIRE].
D. Aristizabal Sierra, F. Bazzocchi, I. de Medeiros Varzielas, L. Merlo and S. Morisi, Tri-Bimaximal Lepton Mixing and Leptogenesis, Nucl. Phys. B 827 (2010) 34 [arXiv:0908.0907] [INSPIRE].
R.G. Felipe and H. Serodio, Constraints on leptogenesis from a symmetry viewpoint, Phys. Rev. D 81 (2010) 053008 [arXiv:0908.2947] [INSPIRE].
E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1205.5547
Rights and permissions
About this article
Cite this article
Sierra, D.A., Degee, A. & Kamenik, J.F. Minimal lepton flavor violating realizations of minimal seesaw models. J. High Energ. Phys. 2012, 135 (2012). https://doi.org/10.1007/JHEP07(2012)135
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2012)135