Abstract
Soft functions defined in terms of matrix elements of soft fields dressed by Wilson lines are central components of factorization theorems for cross sections and decay rates in collider and heavy-quark physics. While in many cases the relevant soft functions are defined in terms of gluon operators, at subleading order in power counting soft functions containing quark fields appear. We present a detailed discussion of the properties of the soft-quark soft function consisting of a quark propagator dressed by two finite-length Wilson lines connecting at one point. This function enters in the factorization theorem for the Higgs-boson decay amplitude of the h → γγ process mediated by light-quark loops. We perform the renormalization of this soft function at one-loop order, present a conjecture for its two-loop anomalous dimension and discuss solutions to its renormalization-group evolution equation in momentum space, in Laplace space and in the “diagonal space”, where the evolution is strictly local in the momentum variable.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].
M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Lect. Notes Phys. 896 (2015) 1 [arXiv:1410.1892] [INSPIRE].
Z.L. Liu and M. Neubert, Factorization at subleading power and endpoint-divergent convolutions in h → γγ decay, JHEP 04 (2020) 033 [arXiv:1912.08818] [INSPIRE].
I. Moult, I.W. Stewart and G. Vita, Subleading Power Factorization with Radiative Functions, JHEP 11 (2019) 153 [arXiv:1905.07411] [INSPIRE].
I. Moult, I.W. Stewart, G. Vita and H.X. Zhu, The Soft Quark Sudakov, JHEP 05 (2020) 089 [arXiv:1910.14038] [INSPIRE].
I. Moult, G. Vita and K. Yan, Subleading Power Resummation of Rapidity Logarithms: The Energy-Energy Correlator in \( \mathcal{N} \) = 4 SYM, JHEP 07 (2020) 005 [arXiv:1912.02188] [INSPIRE].
A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].
G. Bell, T. Feldmann, Y.-M. Wang and M.W.Y. Yip, Light-Cone Distribution Amplitudes for Heavy-Quark Hadrons, JHEP 11 (2013) 191 [arXiv:1308.6114] [INSPIRE].
V.M. Braun and A.N. Manashov, Conformal symmetry of the Lange-Neubert evolution equation, Phys. Lett. B 731 (2014) 316 [arXiv:1402.5822] [INSPIRE].
R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].
M.I. Kotsky and O.I. Yakovlev, On the resummation of double logarithms in the process H → γγ, Phys. Lett. B 418 (1998) 335 [hep-ph/9708485] [INSPIRE].
R. Akhoury, H. Wang and O.I. Yakovlev, On the Resummation of large QCD logarithms in H → γγ decay, Phys. Rev. D 64 (2001) 113008 [hep-ph/0102105] [INSPIRE].
A.A. Penin, High-Energy Limit of Quantum Electrodynamics beyond Sudakov Approximation, Phys. Lett. B 745 (2015) 69 [Erratum ibid. 751 (2015) 596] [Erratum ibid. 771 (2017) 633] [arXiv:1412.0671] [INSPIRE].
T. Liu and A.A. Penin, High-Energy Limit of QCD beyond the Sudakov Approximation, Phys. Rev. Lett. 119 (2017) 262001 [arXiv:1709.01092] [INSPIRE].
T. Liu and A. Penin, High-Energy Limit of Mass-Suppressed Amplitudes in Gauge Theories, JHEP 11 (2018) 158 [arXiv:1809.04950] [INSPIRE].
T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
S.W. Bosch, R.J. Hill, B.O. Lange and M. Neubert, Factorization and Sudakov resummation in leptonic radiative B decay, Phys. Rev. D 67 (2003) 094014 [hep-ph/0301123] [INSPIRE].
Z.L. Liu and M. Neubert, Two-Loop Radiative Jet Function for Exclusive B-Meson and Higgs Decays, JHEP 06 (2020) 060 [arXiv:2003.03393] [INSPIRE].
T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].
V.M. Braun, Y. Ji and A.N. Manashov, Two-loop evolution equation for the B-meson distribution amplitude, Phys. Rev. D 100 (2019) 014023 [arXiv:1905.04498] [INSPIRE].
A.G. Grozin and M. Neubert, Asymptotics of heavy meson form-factors, Phys. Rev. D 55 (1997) 272 [hep-ph/9607366] [INSPIRE].
B.O. Lange and M. Neubert, Renormalization group evolution of the B meson light cone distribution amplitude, Phys. Rev. Lett. 91 (2003) 102001 [hep-ph/0303082] [INSPIRE].
S.J. Lee and M. Neubert, Model-independent properties of the B-meson distribution amplitude, Phys. Rev. D 72 (2005) 094028 [hep-ph/0509350] [INSPIRE].
A.M. Mathai and R.K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer, Berlin (1973) [DOI].
R. Beals and J. Szmigielski, Meijer G-Functions: A Gentle Introduction, Not. Amer. Math. Soc. 60 (2013) 866.
T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].
M. Neubert, Advanced predictions for moments of the \( \overline{B} \) → Xsγ photon spectrum, Phys. Rev. D 72 (2005) 074025 [hep-ph/0506245] [INSPIRE].
T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].
T. Becher and M. Neubert, Drell-Yan Production at Small qT , Transverse Parton Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].
J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2005.03013
On leave from Department of Physics, University of Arizona, Tucson, AZ 85721, U.S.A. (Sean Fleming)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Liu, Z.L., Mecaj, B., Neubert, M. et al. Renormalization and scale evolution of the soft-quark soft function. J. High Energ. Phys. 2020, 104 (2020). https://doi.org/10.1007/JHEP07(2020)104
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2020)104