Abstract
We propose an electroweakly interacting spin-1 dark matter (DM) model. The electroweak gauge symmetry, SU(2)L×U(1)Y , is extended into SU(2)0×SU(2)1 ×SU(2)2×U(1)Y . A discrete symmetry exchanging SU(2)0 and SU(2)2 is imposed. This discrete symmetry stabilizes the DM candidate. The spin-1 DM particle (V 0) and its SU(2)L partners (V ±) interact with the Standard Model (SM) electroweak gauge bosons without any suppression factors. Consequently, pairs of DM particles efficiently annihilate into the SM particles in the early universe, and the measured value of the DM energy density is easily realized by the thermal freeze-out mechanism. The model also predicts a heavy vector triplet (W ′± and Z ′) in the visible sector. They contribute to the DM annihilation processes. The mass ratio of Z ′ and V 0 determines values of various couplings, and constraints on W ′ and Z ′ restrict regions of the parameter space that are viable for DM physics. We investigate the constraints from perturbative unitarity of scalar and gauge couplings, the Higgs signal strength, W ′ search at the LHC, and DM direct detection experiments. It is found that the relic abundance of V 0 explains the right amount of the DM energy density for 3 TeV \( \underset{\sim }{<}{m}_Vo\underset{\sim }{<} \) 19 TeV.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].
XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
S. Ipek, D. McKeen and A.E. Nelson, A renormalizable model for the Galactic Center gamma ray excess from dark matter annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].
K. Ghorbani, Fermionic dark matter with pseudo-scalar Yukawa interaction, JCAP 01 (2015) 015 [arXiv:1408.4929] [INSPIRE].
S. Baek, P. Ko and J. Li, Minimal renormalizable simplified dark matter model with a pseudoscalar mediator, Phys. Rev. D 95 (2017) 075011 [arXiv:1701.04131] [INSPIRE].
C. Gross, O. Lebedev and T. Toma, Cancellation mechanism for dark-matter-nucleon interaction, Phys. Rev. Lett. 119 (2017) 191801 [arXiv:1708.02253] [INSPIRE].
Y. Abe, T. Toma and K. Tsumura, Pseudo-Nambu-Goldstone dark matter from gauged U(1)B−L symmetry, JHEP 05 (2020) 057 [arXiv:2001.03954] [INSPIRE].
N. Okada, D. Raut and Q. Shafi, Pseudo-Goldstone dark matter in gauged B − L extended standard model, arXiv:2001.05910 [INSPIRE].
A. Ahmed, S. Najjari and C.B. Verhaaren, A minimal model for neutral naturalness and pseudo-Nambu-Goldstone dark matter, JHEP 06 (2020) 007 [arXiv:2003.08947] [INSPIRE].
N. Maru, N. Okada and S. Okada, SU(2)L doublet vector dark matter from gauge-Higgs unification, Phys. Rev. D 98 (2018) 075021 [arXiv:1803.01274] [INSPIRE].
A. Belyaev et al., Minimal spin-one isotriplet dark matter, Phys. Rev. D 99 (2019) 115003 [arXiv:1808.10464] [INSPIRE].
G. Servant and T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].
O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].
T. Abe, M. Kakizaki, S. Matsumoto and O. Seto, Vector WIMP miracle, Phys. Lett. B 713 (2012) 211 [arXiv:1202.5902] [INSPIRE].
Y. Farzan and A.R. Akbarieh, VDM: a model for Vector Dark Matter, JCAP 10 (2012) 026 [arXiv:1207.4272] [INSPIRE].
S. Baek, P. Ko, W.-I. Park and E. Senaha, Higgs portal vector dark matter: revisited, JHEP 05 (2013) 036 [arXiv:1212.2131] [INSPIRE].
J.M. Hyde, A.J. Long and T. Vachaspati, Dark strings and their couplings to the standard model, Phys. Rev. D 89 (2014) 065031 [arXiv:1312.4573] [INSPIRE].
P. Ko, W.-I. Park and Y. Tang, Higgs portal vector dark matter for GeV scale γ-ray excess from galactic center, JCAP 09 (2014) 013 [arXiv:1404.5257] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Invisible Higgs decay width vs. dark matter direct detection cross section in Higgs portal dark matter models, Phys. Rev. D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].
J.-H. Yu, Vector fermion-portal dark matter: direct detection and Galactic Center gamma-ray excess, Phys. Rev. D 90 (2014) 095010 [arXiv:1409.3227] [INSPIRE].
C.-R. Chen, Y.-K. Chu and H.-C. Tsai, An elusive vector dark matter, Phys. Lett. B 741 (2015) 205 [arXiv:1410.0918] [INSPIRE].
T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].
H. Zhang, C.S. Li, Q.-H. Cao and Z. Li, A dark matter model with non-Abelian gauge symmetry, Phys. Rev. D 82 (2010) 075003 [arXiv:0910.2831] [INSPIRE].
J. Diaz-Cruz and E. Ma, Neutral SU(2) gauge extension of the standard model and a vector-boson dark-matter candidate, Phys. Lett. B 695 (2011) 264 [arXiv:1007.2631] [INSPIRE].
S. Bhattacharya, J. Diaz-Cruz, E. Ma and D. Wegman, Dark vector-gauge-boson model, Phys. Rev. D 85 (2012) 055008 [arXiv:1107.2093] [INSPIRE].
T. Hambye and A. Strumia, Dynamical generation of the weak and dark matter scale, Phys. Rev. D 88 (2013) 055022 [arXiv:1306.2329] [INSPIRE].
H. Davoudiasl and I.M. Lewis, Dark matter from hidden forces, Phys. Rev. D 89 (2014) 055026 [arXiv:1309.6640] [INSPIRE].
S. Baek, P. Ko and W.-I. Park, Hidden sector monopole, vector dark matter and dark radiation with Higgs portal, JCAP 10 (2014) 067 [arXiv:1311.1035] [INSPIRE].
V.V. Khoze and G. Ro, Dark matter monopoles, vectors and photons, JHEP 10 (2014) 061 [arXiv:1406.2291] [INSPIRE].
S. Fraser, E. Ma and M. Zakeri, SU(2)N model of vector dark matter with a leptonic connection, Int. J. Mod. Phys. A 30 (2015) 1550018 [arXiv:1409.1162] [INSPIRE].
A. Karam and K. Tamvakis, Dark matter and neutrino masses from a scale-invariant multi-Higgs portal, Phys. Rev. D 92 (2015) 075010 [arXiv:1508.03031] [INSPIRE].
B. Barman, S. Bhattacharya, S.K. Patra and J. Chakrabortty, Non-Abelian vector boson dark matter, its unified route and signatures at the LHC, JCAP 12 (2017) 021 [arXiv:1704.04945] [INSPIRE].
B. Barman, S. Bhattacharya and M. Zakeri, Multipartite dark matter in SU(2)N extension of standard model and signatures at the LHC, JCAP 09 (2018) 023 [arXiv:1806.01129] [INSPIRE].
B. Barman, S. Bhattacharya and M. Zakeri, Non-Abelian vector boson as FIMP dark matter, JCAP 02 (2020) 029 [arXiv:1905.07236] [INSPIRE].
E. Ma, [SU (2)]3 dark matter, Phys. Lett. B 780 (2018) 533 [arXiv:1712.08994] [INSPIRE].
C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].
N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].
H. Georgi, A tool kit for builders of composite models, Nucl. Phys. B 266 (1986) 274 [INSPIRE].
K. Hally, H.E. Logan and T. Pilkington, Constraints on large scalar multiplets from perturbative unitarity, Phys. Rev. D 85 (2012) 095017 [arXiv:1202.5073] [INSPIRE].
ATLAS collaboration, Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 100 (2019) 052013 [arXiv:1906.05609] [INSPIRE].
CMS collaboration, Search for high-mass resonances in final states with a lepton and missing transverse momentum at \( \sqrt{s} \) = 13 TeV, JHEP 06 (2018) 128 [arXiv:1803.11133] [INSPIRE].
ATLAS collaboration, Prospects for searches for heavy Z ′ and W ′ bosons in fermionic final states with the ATLAS experiment at the HL-LHC, Tech. Rep. ATL-PHYS-PUB-2018-044, CERN, Geneva (Dec, 2018).
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 06 (2018) 022 [arXiv:1712.02118] [INSPIRE].
G. B́elanger et al., MicrOMEGAs5.0: freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [INSPIRE].
J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [INSPIRE].
J. Hisano, K. Ishiwata and N. Nagata, QCD effects on direct detection of Wino dark matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Hisano et al., Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].
J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].
J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
K. Blum, R. Sato and T.R. Slatyer, Self-consistent calculation of the sommerfeld enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2004.00884
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Abe, T., Fujiwara, M., Hisano, J. et al. A model of electroweakly interacting non-abelian vector dark matter. J. High Energ. Phys. 2020, 136 (2020). https://doi.org/10.1007/JHEP07(2020)136
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2020)136