Abstract
The Standard Model (SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
FCC collaboration, HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109 [INSPIRE].
FCC collaboration, FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474 [INSPIRE].
Takaaki Kajita. Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 (2016) 030501..
ArthurB. McDonald. Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos, Rev. Mod. Phys. 88 (2016) 030502..
R. Torre, L. Ricci and A. Wulzer, On the W&Y interpretation of high-energy Drell-Yan measurements, JHEP 02 (2021) 144 [arXiv:2008.12978] [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].
Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].
J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].
R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642.
S. Khan, S. Goswami and S. Roy, Vacuum Stability constraints on the minimal singlet TeV Seesaw Model, Phys. Rev. D 89 (2014) 073021 [arXiv:1212.3694] [INSPIRE].
W. Rodejohann and H. Zhang, Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability, JHEP 06 (2012) 022 [arXiv:1203.3825] [INSPIRE].
C. Bonilla, R.M. Fonseca and J.W.F. Valle, Vacuum stability with spontaneous violation of lepton number, Phys. Lett. B 756 (2016) 345 [arXiv:1506.04031] [INSPIRE].
L. Delle Rose, C. Marzo and A. Urbano, On the stability of the electroweak vacuum in the presence of low-scale seesaw models, JHEP 12 (2015) 050 [arXiv:1506.03360] [INSPIRE].
M. Lindner, H.H. Patel and B. Radovčić, Electroweak Absolute, Meta-, and Thermal Stability in Neutrino Mass Models, Phys. Rev. D 93 (2016) 073005 [arXiv:1511.06215] [INSPIRE].
J.N. Ng and A. de la Puente, Electroweak Vacuum Stability and the Seesaw Mechanism Revisited, Eur. Phys. J. C 76 (2016) 122 [arXiv:1510.00742] [INSPIRE].
G. Bambhaniya, P.S. Bhupal Dev, S. Goswami, S. Khan and W. Rodejohann, Naturalness, Vacuum Stability and Leptogenesis in the Minimal Seesaw Model, Phys. Rev. D 95 (2017) 095016 [arXiv:1611.03827] [INSPIRE].
I. Garg, S. Goswami, K.N. Vishnudath and N. Khan, Electroweak vacuum stability in presence of singlet scalar dark matter in TeV scale seesaw models, Phys. Rev. D 96 (2017) 055020 [arXiv:1706.08851] [INSPIRE].
S. Mandal, R. Srivastava and J.W.F. Valle, Consistency of the dynamical high-scale type-I seesaw mechanism, Phys. Rev. D 101 (2020) 115030 [arXiv:1903.03631] [INSPIRE].
Sanjoy Mandal, Rahul Srivastava, José and W.F. Valle, Electroweak symmetry breaking in the inverse seesaw mechanism, JHEP 03 (2021) 212.
M.C. Gonzalez-Garcia and J.W.F. Valle, Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models, Phys. Lett. B 216 (1989) 360 [INSPIRE].
A.S. Joshipura and J.W.F. Valle, Invisible Higgs decays and neutrino physics, Nucl. Phys. B 397 (1993) 105 [INSPIRE].
ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
C. Bonilla, J.W.F. Valle and J.C. Romão, Neutrino mass and invisible Higgs decays at the LHC, Phys. Rev. D 91 (2015) 113015 [arXiv:1502.01649] [INSPIRE].
C. Bonilla, J.C. Romão and J.W.F. Valle, Electroweak breaking and neutrino mass: ‘invisible’ Higgs decays at the LHC (type-II seesaw), New J. Phys. 18 (2016) 033033 [arXiv:1511.07351] [INSPIRE].
D. Fontes, J.C. Romao and J.W.F. Valle, Electroweak Breaking and Higgs Boson Profile in the Simplest Linear Seesaw Model, JHEP 10 (2019) 245 [arXiv:1908.09587] [INSPIRE].
CMS collaboration, Search for invisible decays of a higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520.
Morad Aaboud et al. Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett 122 (2019) 231801..
D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].
G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].
Salvador Centelles Chuliá, Rahul Srivastava and Avelino Vicente. The Inverse Seesaw Family: Dirac And Majorana, JHEP 03 (2021) 248.
J.A. Casas, V. Di Clemente, A. Ibarra and M. Quirós, Massive neutrinos and the Higgs mass window, Phys. Rev. D 62 (2000) 053005 [hep-ph/9904295] [INSPIRE].
C. Corianò, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1)B−L, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].
J.C. Romao, F. de Campos and J.W.F. Valle, New Higgs signatures in supersymmetry with spontaneous broken R parity, Phys. Lett. B 292 (1992) 329 [hep-ph/9207269] [INSPIRE].
A. Lopez-Fernandez, J.C. Romao, F. de Campos and J.W.F. Valle, Model independent Higgs boson mass limits at LEP, Phys. Lett. B 312 (1993) 240 [hep-ph/9304255] [INSPIRE].
F. De Campos, M.A. Garcia-Jareno, A.S. Joshipura, J. Rosiek, J.W.F. Valle and D.P. Roy, Limits on associated production of visibly and invisibly decaying Higgs bosons from Z decays, Phys. Lett. B 336 (1994) 446 [hep-ph/9407328] [INSPIRE].
F. de Campos, O.J.P. Eboli, J. Rosiek and J.W.F. Valle, Searching for invisibly decaying Higgs bosons at LEP-2, Phys. Rev. D 55 (1997) 1316 [hep-ph/9601269] [INSPIRE].
DELPHI collaboration, Searches for neutral Higgs bosons in extended models, Eur. Phys. J. C 38 (2004) 1 [hep-ex/0410017] [INSPIRE].
CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
J.C. Romao, J.L. Diaz-Cruz, F. de Campos and J.W.F. Valle, Detection of intermediate mass Higgs bosons from spontaneously broken R-parity supersymmetry, Mod. Phys. Lett. A 9 (1994) 817 [hep-ph/9211258] [INSPIRE].
CMS collaboration, Combination of searches for heavy resonances decaying to WW, WZ, ZZ, WH, and ZH boson pairs in proton-proton collisions at \( \sqrt{s} \) = 8 and 13 TeV, Phys. Lett. B 774 (2017) 533 [arXiv:1705.09171] [INSPIRE].
ATLAS collaboration, Search for heavy resonances decaying into WW in the eνμν final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 24 [arXiv:1710.01123] [INSPIRE].
Agnieszka Ilnicka, Tania Robens and Tim Stefaniak, Constraining Extended Scalar Sectors at the LHC and beyond, Mod. Phys. Lett. A, 33 (10n11):1830007 (2018).
Z.G. Berezhiani, A.Y. Smirnov and J.W.F. Valle, Observable Majoron emission in neutrinoless double beta decay, Phys. Lett. B 291 (1992) 99 [hep-ph/9207209] [INSPIRE].
K. Choi and A. Santamaria, Majorons and Supernova Cooling, Phys. Rev. D 42 (1990) 293 [INSPIRE].
J.W.F. Valle, Gauge theories and the physics of neutrino mass, Prog. Part. Nucl. Phys. 26 (1991) 91 [INSPIRE].
S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological Constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].
V. Berezinsky and J.W.F. Valle, The KeV majoron as a dark matter particle, Phys. Lett. B 318 (1993) 360 [hep-ph/9309214] [INSPIRE].
M. Lattanzi and J.W.F. Valle, Decaying warm dark matter and neutrino masses, Phys. Rev. Lett. 99 (2007) 121301 [arXiv:0705.2406] [INSPIRE].
F. Bazzocchi, M. Lattanzi, S. Riemer-Sørensen and J.W.F. Valle, X-ray photons from late-decaying majoron dark matter, JCAP 08 (2008) 013 [arXiv:0805.2372] [INSPIRE].
Massimiliano Lattanzi et al. Updated CMB, X- and gamma-ray constraints on Majoron dark matter, Phys. Rev D 88 063528.
M. Lattanzi, R.A. Lineros and M. Taoso, Connecting neutrino physics with dark matter, New J. Phys. 16 (2014) 125012 [arXiv:1406.0004] [INSPIRE].
J.-L. Kuo, M. Lattanzi, K. Cheung and J.W.F. Valle, Decaying warm dark matter and structure formation, JCAP 12 (2018) 026 [arXiv:1803.05650] [INSPIRE].
J. Heeck, Majorons as cold light dark matter, PoS NOW2018 (2018) 093 [arXiv:1809.09413] [INSPIRE].
M. Reig, J.W. Valle and M. Yamada, Light majoron cold dark matter from topological defects and the formation of boson stars, JCAP 09 (2019) 029.
S.M. Boucenna, S. Morisi, Q. Shafi and J.W.F. Valle, Inflation and majoron dark matter in the seesaw mechanism, Phys. Rev. D 90 (2014) 055023 [arXiv:1404.3198] [INSPIRE].
D. Aristizabal Sierra, M. Tortola, J.W.F. Valle and A. Vicente, Leptogenesis with a dynamical seesaw scale, JCAP 07 (2014) 052 [arXiv:1405.4706] [INSPIRE].
G. Lazarides, M. Reig, Q. Shafi, R. Srivastava and J.W.F. Valle, Spontaneous Breaking of Lepton Number and the Cosmological Domain Wall Problem, Phys. Rev. Lett. 122 (2019) 151301 [arXiv:1806.11198] [INSPIRE].
F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2103.02670
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Mandal, S., Romão, J.C., Srivastava, R. et al. Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies. J. High Energ. Phys. 2021, 29 (2021). https://doi.org/10.1007/JHEP07(2021)029
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2021)029