Abstract
The K → μ+μ− decay is often considered to be uninformative of fundamental theory parameters since the decay is polluted by long-distance hadronic effects. We demonstrate that, using very mild assumptions and utilizing time-dependent interference effects, ℬ(KS → μ+μ−)ℓ=0 can be experimentally determined without the need to separate the ℓ = 0 and ℓ = 1 final states. This quantity is very clean theoretically and can be used to test the Standard Model. In particular, it can be used to extract the CKM matrix element combination \( \mid {V}_{ts}{V}_{td}\sin \left(\beta +{\beta}_s\right)\mid \approx \mid {A}^2{\lambda}^5\overline{\eta}\mid \) with hadronic uncertainties below 1%.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes k(L) → μμ, K+ → π+\( \nu \overline{\nu} \) and K0 ↔ \( {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
J.S. Hagelin and L.S. Littenberg, Rare kaon decays, Prog. Part. Nucl. Phys. 23 (1989) 1 [INSPIRE].
C.O. Dib, Bound on V(td) from K± → π±\( \nu \overline{\nu} \) and B factories, Phys. Lett. B 282 (1992) 201 [INSPIRE].
G. Buchalla and A.J. Buras, The rare decays K+ → π+\( \nu \overline{\nu} \) and KL → μ+μ− beyond leading logarithms, Nucl. Phys. B 412 (1994) 106 [hep-ph/9308272] [INSPIRE].
G. D’Ambrosio and G. Isidori, CP violation in kaon decays, Int. J. Mod. Phys. A 13 (1998) 1 [hep-ph/9611284] [INSPIRE].
A. Pich, Rare kaon decays, hep-ph/9610243 [INSPIRE].
A.J. Buras and R. Fleischer, Quark mixing, CP-violation and rare decays after the top quark discovery, Adv. Ser. Direct. High Energy Phys. 15 (1998) 65 [hep-ph/9704376] [INSPIRE].
NA62 collaboration, An investigation of the very rare K+ → π+\( \nu \overline{\nu} \) decay, JHEP 11 (2020) 042 [arXiv:2007.08218] [INSPIRE].
KOTO collaboration, Study of the KL → π0\( \nu \overline{\nu} \) Decay at the J-PARC KOTO experiment, Phys. Rev. Lett. 126 (2021) 121801 [arXiv:2012.07571] [INSPIRE].
A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, K+ → π+\( \nu \overline{\nu} \) and KL → π0\( \nu \overline{\nu} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].
G. Buchalla and A.J. Buras, The rare decays K → π\( \nu \overline{\nu} \), B → X\( \nu \overline{\nu} \) and B → l+l−: an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].
F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from Kl3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].
R.F. Lebed, Relating CKM parametrizations and unitarity triangles, Phys. Rev. D 55 (1997) 348 [hep-ph/9607305] [INSPIRE].
G. D’Ambrosio and T. Kitahara, Direct CP Violation in K → μ+μ−, Phys. Rev. Lett. 119 (2017) 201802 [arXiv:1707.06999] [INSPIRE].
B.R. Martin, E. De Rafael and J. Smith, Neutral kaon decays into lepton pairs, Phys. Rev. D 2 (1970) 179 [INSPIRE].
A. Pais and S.B. Treiman, Study of the decays k → l + \( \overline{l} \) and k → π + l + \( \overline{l} \), Phys. Rev. 176 (1968) 1974 [INSPIRE].
L.M. Sehgal, Tests of CP and CPT invariance in the decay k(l) → l + \( \overline{l} \), Phys. Rev. 181 (1969) 2151 [INSPIRE].
N.H. Christ and T.D. Lee, CP Nonconservation and Inequalities Between μ+μ− and 2γ Decay Rates of \( {K}_S^0 \) and \( {K}_L^0 \), Phys. Rev. D 4 (1971) 209 [INSPIRE].
L.M. Sehgal, Electromagnetic contribution to the decays K(S) → lepton anti-lepton and K(L) → lepton anti-lepton, Phys. Rev. 183 (1969) 1511 [Erratum ibid. 4 (1971) 1582] [INSPIRE].
G.V. Dass and L. Wolfenstein, Cp non-invariance and the k(s) → μ+μ− decay rate, Phys. Lett. B 38 (1972) 435 [INSPIRE].
M.K. Gaillard and B.W. Lee, Rare decay modes of the K-mesons in gauge theories, Phys. Rev. D 10 (1974) 897 [INSPIRE].
M.K. Gaillard, B.W. Lee and R.E. Shrock, Comment on calculations of the KL → μ+μ− decay rate in gauge theories, Phys. Rev. D 13 (1976) 2674 [INSPIRE].
A.J. Buras, An upper bound on the top quark mass from rare processes, Phys. Rev. Lett. 46 (1981) 1354 [INSPIRE].
L. Bergstrom, E. Masso, P. Singer and D. Wyler, KL → μ+μ−, top mass and bottom lifetime, Phys. Lett. B 134 (1984) 373 [INSPIRE].
C.Q. Geng and J.N. Ng, Constraints on T quark mass, quark mixings from KL → \( \mu \overline{\mu} \) and relations to other rare decays, Phys. Rev. D 41 (1990) 2351 [INSPIRE].
E.B. Bogomolny, V.A. Novikov and M.A. Shifman, K(L) → 2μ decay in the Weinberg-Salam model, Sov. J. Nucl. Phys. 23 (1976) 435 [Yad. Fiz. 23 (1976) 825] [INSPIRE].
B.W. Lee, J.R. Primack and S.B. Treiman, Some physical constraints on gauge models of weak interactions, Phys. Rev. D 7 (1973) 510 [INSPIRE].
M.B. Voloshin and E.P. Shabalin, Contribution of two photon mechanism to real part of the K(L) → μ+μ− decay amplitude and calculations of charmed particle mass, JETP Lett. 23 (1976) 107 [Pisma Zh. Eksp. Teor. Fiz. 23 (1976) 123] [INSPIRE].
R.E. Shrock and M.B. Voloshin, Bounds on quark mixing angles from the decay K(l) → \( \mu \overline{\mu} \), Phys. Lett. B 87 (1979) 375 [INSPIRE].
P. Herczeg, Muon polarization in KL → μ+μ−, Phys. Rev. D 27 (1983) 1512 [INSPIRE].
H. Stern and M.K. Gaillard, Review of the k(l) → μ+μ− puzzle, Annals Phys. 76 (1973) 580 [INSPIRE].
Y. Grossman and Y. Nir, K(L) → π0\( \nu \overline{\nu} \) beyond the standard model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].
J. Aebischer, A.J. Buras and J. Kumar, Another SMEFT story: Z′ facing new results on ϵ′/ϵ, ∆MK and K → π\( \nu \overline{\nu} \), JHEP 12 (2020) 097 [arXiv:2006.01138] [INSPIRE].
R. Mandal and A. Pich, Constraints on scalar leptoquarks from lepton and kaon physics, JHEP 12 (2019) 089 [arXiv:1908.11155] [INSPIRE].
M. Endo, T. Goto, T. Kitahara, S. Mishima, D. Ueda and K. Yamamoto, Gluino-mediated electroweak penguin with flavor-violating trilinear couplings, JHEP 04 (2018) 019 [arXiv:1712.04959] [INSPIRE].
C. Bobeth and A.J. Buras, Leptoquarks meet ε′/ε and rare Kaon processes, JHEP 02 (2018) 101 [arXiv:1712.01295] [INSPIRE].
V. Chobanova et al., Probing SUSY effects in \( {K}_S^0 \) → μ+μ−, JHEP 05 (2018) 024 [arXiv:1711.11030] [INSPIRE].
C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ∆S = 2 and ∆B = 2 processes, JHEP 07 (2017) 124 [arXiv:1703.04753] [INSPIRE].
M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Revisiting kaon physics in general Z scenario, Phys. Lett. B 771 (2017) 37 [arXiv:1612.08839] [INSPIRE].
M. Tanimoto and K. Yamamoto, Probing SUSY with 10 TeV stop mass in rare decays and CP-violation of kaon, PTEP 2016 (2016) 123B02 [arXiv:1603.07960] [INSPIRE].
A.J. Buras, New physics patterns in ε′/ε and εK with implications for rare kaon decays and ∆MK, JHEP 04 (2016) 071 [arXiv:1601.00005] [INSPIRE].
A.J. Buras, D. Buttazzo and R. Knegjens, K → π\( \nu \overline{\nu} \) and ε′/ε in simplified new physics models, JHEP 11 (2015) 166 [arXiv:1507.08672] [INSPIRE].
M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].
F. Mescia, C. Smith and S. Trine, K(L) → π0e+e− and K(L) → π0μ+μ−: a binary star on the stage of flavor physics, JHEP 08 (2006) 088 [hep-ph/0606081] [INSPIRE].
N.G. Deshpande, D.K. Ghosh and X.-G. He, Constraints on new physics from K → π\( \nu \overline{\nu} \), Phys. Rev. D 70 (2004) 093003 [hep-ph/0407021] [INSPIRE].
A. Crivellin, G. D’Ambrosio, M. Hoferichter and L.C. Tunstall, Violation of lepton flavor and lepton flavor universality in rare kaon decays, Phys. Rev. D 93 (2016) 074038 [arXiv:1601.00970] [INSPIRE].
T. Kitahara, T. Okui, G. Perez, Y. Soreq and K. Tobioka, New physics implications of recent search for KL → π0\( \nu \overline{\nu} \) at KOTO, Phys. Rev. Lett. 124 (2020) 071801 [arXiv:1909.11111] [INSPIRE].
R. Ziegler, J. Zupan and R. Zwicky, Three exceptions to the Grossman-Nir bound, JHEP 07 (2020) 229 [arXiv:2005.00451] [INSPIRE].
X.-G. He, X.-D. Ma, J. Tandean and G. Valencia, Evading the Grossman-Nir bound with ∆I = 3/2 new physics, JHEP 08 (2020) 034 [arXiv:2005.02942] [INSPIRE].
S. Gori, G. Perez and K. Tobioka, KOTO vs. NA62 dark scalar searches, JHEP 08 (2020) 110 [arXiv:2005.05170] [INSPIRE].
LHCb collaboration, Constraints on the \( {K}_S^0 \) → μ+μ− branching fraction, Phys. Rev. Lett. 125 (2020) 231801 [arXiv:2001.10354] [INSPIRE].
KLEVER Project collaboration, KLEVER: an experiment to measure BR(KL → π0\( \nu \overline{\nu} \)) at the CERN SPS, arXiv:1901.03099 [INSPIRE].
LHCb collaboration, Improved limit on the branching fraction of the rare decay \( {K}_S^0 \) → μ+μ−, Eur. Phys. J. C 77 (2017) 678 [arXiv:1706.00758] [INSPIRE].
G. Amelino-Camelia et al., Physics with the KLOE-2 experiment at the upgraded DAϕNE, Eur. Phys. J. C 68 (2010) 619 [arXiv:1003.3868] [INSPIRE].
KTeV collaboration, Measurements of the Decay KL → e+e−γ, Phys. Rev. Lett. 99 (2007) 051804 [hep-ex/0702039] [INSPIRE].
NA62 collaboration, The K+ → π+\( \nu \overline{\nu} \) decay and new physics searches at NA62, Acta Phys. Polon. Supp. 14 (2021) 41 [INSPIRE].
A. Cerri et al., Report from working group 4: opportunities in flavour physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 867 [arXiv:1812.07638] [INSPIRE].
G. Ecker and A. Pich, The longitudinal muon polarization in K(L) → μ+μ−, Nucl. Phys. B 366 (1991) 189 [INSPIRE].
G. Isidori and R. Unterdorfer, On the short distance constraints from K(L, S) → μ+μ−, JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].
M. Gorbahn and U. Haisch, Charm quark contribution to K(L)μ+μ− at next-to-next-to-leading, Phys. Rev. Lett. 97 (2006) 122002 [hep-ph/0605203] [INSPIRE].
G. Colangelo, R. Stucki and L.C. Tunstall, Dispersive treatment of KS → γγ and KS → γℓ+ℓ−, Eur. Phys. J. C 76 (2016) 604 [arXiv:1609.03574] [INSPIRE].
D. Gomez Dumm and A. Pich, Long distance contributions to the K(L) → μ+μ− decay width, Phys. Rev. Lett. 80 (1998) 4633 [hep-ph/9801298] [INSPIRE].
M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Decay of pseudoscalars into lepton pairs and large Nc QCD, Phys. Rev. Lett. 83 (1999) 5230 [hep-ph/9908283] [INSPIRE].
G. D’Ambrosio, D. Greynat and G. Vulvert, Standard model and new physics contributions to KL and KS into four leptons, Eur. Phys. J. C 73 (2013) 2678 [arXiv:1309.5736] [INSPIRE].
V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon decays in the standard model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].
A.J. Buras, F. Schwab and S. Uhlig, Waiting for precise measurements of K+ → π+\( \nu \overline{\nu} \) and KL → π0\( \nu \overline{\nu} \), Rev. Mod. Phys. 80 (2008) 965 [hep-ph/0405132] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].
L. Littenberg, Rare kaon and pion decays, talk given at the PSI Zuoz Summer School on Exploring the Limits of the Standard Model, August 18–24, Engadin, Switzerland (2002) [hep-ex/0212005] [INSPIRE].
D. Greynat and E. de Rafael, Theoretical aspects of rare kaon decays, talk given at the 14th Rencontres de Blois on Matter-Anti-matter Asymmetry, June 17–22, Chateau de Blois, France (2003) [hep-ph/0303096] [INSPIRE].
G. D’Ambrosio, G. Isidori and J. Portoles, Can we extract short distance information from B(K(L) → μ+μ−)?, Phys. Lett. B 423 (1998) 385 [hep-ph/9708326] [INSPIRE].
R. Aleksan, B. Kayser and D. London, Determining the quark mixing matrix from CP-violating asymmetries, Phys. Rev. Lett. 73 (1994) 18 [hep-ph/9403341] [INSPIRE].
G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to Bs → μ+μ−, JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].
Flavour Lattice Averaging Group collaboration, FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
NA62 collaboration, Latest results from NA62, PoS(DIS2019)122 [INSPIRE].
A.A. Alves Junior et al., Prospects for measurements with strange hadrons at LHCb, JHEP 05 (2019) 048 [arXiv:1808.03477] [INSPIRE].
E. Mazzucato, NA48: results on rare decays and future prospects, Nucl. Phys. B Proc. Suppl. 99 (2001) 81.
R.H. Good et al., Regeneration of neutral K mesons and their mass difference, Phys. Rev. 124 (1961) 1223 [INSPIRE].
A. Bohm et al., On KL-KS regeneration in copper, Phys. Lett. B 27 (1968) 594 [INSPIRE].
K. Kleinknecht, K(l)-k(s) regeneration, Fortsch. Phys. 21 (1973) 57 [INSPIRE].
CPLEAR collaboration, Measurement of the neutral kaon regeneration amplitude in carbon at momenta below 1-GeV/c, Phys. Lett. B 413 (1997) 422 [INSPIRE].
P.B. Siegel, W.B. Kaufmann and W.R. Gibbs, K+ nucleus elastic scattering and charge exchange, Phys. Rev. C 30 (1984) 1256 [INSPIRE].
W.A. Mehlhop et al., Interference between neutral kaons and their mass difference, Phys. Rev. 172 (1968) 1613 [INSPIRE].
W. Fetscher, P. Kokkas, P. Pavlopoulos, T. Schietinger and T. Ruf, Regeneration of arbitrary coherent neutral kaon states: a new method for measuring the K0 \( {\overline{K}}^0 \) forward scattering amplitude, Z. Phys. C 72 (1996) 543 [INSPIRE].
H.R. Quinn, T. Schietinger, J.P. Silva and A.E. Snyder, Using kaon regeneration to probe the quark mixing parameter cos 2β in B → ψK decays, Phys. Rev. Lett. 85 (2000) 5284 [hep-ph/0008021] [INSPIRE].
G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Int. Ser. Monogr. Phys. 103 (1999) 1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2104.06427
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Dery, A., Ghosh, M., Grossman, Y. et al. K → μ+μ− as a clean probe of short-distance physics. J. High Energ. Phys. 2021, 103 (2021). https://doi.org/10.1007/JHEP07(2021)103
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2021)103