Abstract
We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Change history
23 November 2022
An Erratum to this paper has been published: https://doi.org/10.1007/JHEP11(2022)138
References
CHARM-II collaboration, Measurement of differential cross-sections for muon-neutrino electron scattering, Phys. Lett. B 302 (1993) 351 [INSPIRE].
R.C. Allen et al., Study of electron-neutrino electron elastic scattering at LAMPF, Phys. Rev. D 47 (1993) 11 [INSPIRE].
LSND collaboration, Measurement of electron-neutrino-electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].
F. Reines, H.S. Gurr and H.W. Sobel, Detection of \( \overline{\nu} \)e-e scattering, Phys. Rev. Lett. 37 (1976) 315 [INSPIRE].
G.S. Vidyakin et al., Limitations on the magnetic moment and charge radius of the electron-anti-neutrino, JETP Lett. 55 (1992) 206 [Pisma Zh. Eksp. Teor. Fiz. 55 (1992) 212] [INSPIRE].
A.I. Derbin, A.V. Chernyi, L.A. Popeko, V.N. Muratova, G.A. Shishkina and S.I. Bakhlanov, Experiment on anti-neutrino scattering by electrons at a reactor of the Rovno nuclear power plant, JETP Lett. 57 (1993) 768 [Pisma Zh. Eksp. Teor. Fiz. 57 (1993) 755] [INSPIRE].
MUNU collaboration, Final results on the neutrino magnetic moment from the MUNU experiment, Phys. Lett. B 615 (2005) 153 [hep-ex/0502037] [INSPIRE].
TEXONO collaboration, A search of neutrino magnetic moments with a high-purity germanium detector at the Kuo-Sheng nuclear power station, Phys. Rev. D 75 (2007) 012001 [hep-ex/0605006] [INSPIRE].
A.G. Beda et al., The results of search for the neutrino magnetic moment in GEMMA experiment, Adv. High Energy Phys. 2012 (2012) 350150 [INSPIRE].
A.G. Beda et al., Gemma experiment: the results of neutrino magnetic moment search, Phys. Part. Nucl. Lett. 10 (2013) 139.
CONUS collaboration, Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment, Phys. Rev. Lett. 126 (2021) 041804 [arXiv:2011.00210] [INSPIRE].
T. Rink, Investigating neutrino physics within and beyond the Standard Model using CONUS experimental data, Ph.D. thesis, U. Heidelberg, Heidelberg, Germany (2022).
CONNIE collaboration, Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment, JHEP 04 (2020) 054 [arXiv:1910.04951] [INSPIRE].
J. Colaresi, J.I. Collar, T.W. Hossbach, C.M. Lewis and K.M. Yocum, Suggestive evidence for Coherent Elastic Neutrino-Nucleus Scattering from reactor antineutrinos, arXiv:2202.09672 [INSPIRE].
P. Coloma, I. Esteban, M.C. Gonzalez-Garcia, L. Larizgoitia, F. Monrabal and S. Palomares-Ruiz, Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT, JHEP 05 (2022) 037 [arXiv:2202.10829] [INSPIRE].
COHERENT collaboration, Observation of coherent elastic neutrino-nucleus scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
Kamiokande-II collaboration, Observation of 8B solar neutrinos in the Kamiokande-II detector, Phys. Rev. Lett. 63 (1989) 16 [INSPIRE].
Super-Kamiokande collaboration, Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days, Phys. Rev. Lett. 81 (1998) 1158 [Erratum ibid. 81 (1998) 4279] [hep-ex/9805021] [INSPIRE].
SNO collaboration, Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [INSPIRE].
Borexino collaboration, Science and technology of BOREXINO: a real time detector for low-energy solar neutrinos, Astropart. Phys. 16 (2002) 205 [hep-ex/0012030] [INSPIRE].
Borexino collaboration, Direct measurement of the 7Be solar neutrino flux with 192 days of Borexino data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [INSPIRE].
Borexino collaboration, First simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino Phase-II, Phys. Rev. D 100 (2019) 082004 [arXiv:1707.09279] [INSPIRE].
BOREXINO collaboration, Experimental evidence of neutrinos produced in the CNO fusion cycle in the sun, Nature 587 (2020) 577 [arXiv:2006.15115] [INSPIRE].
Borexino collaboration, Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data, Phys. Rev. D 96 (2017) 091103 [arXiv:1707.09355] [INSPIRE].
Borexino collaboration, Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II, JHEP 02 (2020) 038 [arXiv:1905.03512] [INSPIRE].
S. Bilmis, I. Turan, T.M. Aliev, M. Deniz, L. Singh and H.T. Wong, Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev. D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].
R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].
S.K. Agarwalla, F. Lombardi and T. Takeuchi, Constraining non-standard interactions of the neutrino with Borexino, JHEP 12 (2012) 079 [arXiv:1207.3492] [INSPIRE].
A.N. Khan, W. Rodejohann and X.-J. Xu, Borexino and general neutrino interactions, Phys. Rev. D 101 (2020) 055047 [arXiv:1906.12102] [INSPIRE].
A. de Gouvêa, W.-C. Huang and J. Jenkins, Pseudo-Dirac neutrinos in the new Standard Model, Phys. Rev. D 80 (2009) 073007 [arXiv:0906.1611] [INSPIRE].
D.W.P.d. Amaral, D.G. Cerdeno, P. Foldenauer and E. Reid, Solar neutrino probes of the muon anomalous magnetic moment in the gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \), JHEP 12 (2020) 155 [arXiv:2006.11225] [INSPIRE].
D. Montanino, M. Picariello and J. Pulido, Probing neutrino magnetic moment and unparticle interactions with Borexino, Phys. Rev. D 77 (2008) 093011 [arXiv:0801.2643] [INSPIRE].
V. Brdar, J. Kopp, J. Liu, P. Prass and X.-P. Wang, Fuzzy dark matter and nonstandard neutrino interactions, Phys. Rev. D 97 (2018) 043001 [arXiv:1705.09455] [INSPIRE].
A.N. Khan, sin2 θW estimate and neutrino electromagnetic properties from low-energy solar data, J. Phys. G 46 (2019) 035005 [arXiv:1709.02930] [INSPIRE].
A.N. Khan and D.W. McKay, sin2 θW estimate and bounds on nonstandard interactions at source and detector in the solar neutrino low-energy regime, JHEP 07 (2017) 143 [arXiv:1704.06222] [INSPIRE].
J.N. Bahcall, M. Kamionkowski and A. Sirlin, Solar neutrinos: radiative corrections in neutrino-electron scattering experiments, Phys. Rev. D 51 (1995) 6146 [astro-ph/9502003] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and J. Salvado, Updated constraints on non-standard interactions from global analysis of oscillation data, JHEP 08 (2018) 180 [Addendum ibid. 12 (2020) 152] [arXiv:1805.04530] [INSPIRE].
P. Vogel and J. Engel, Neutrino electromagnetic form-factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].
D.G. Cerdeño, M. Fairbairn, T. Jubb, P.A.N. Machado, A.C. Vincent and C. Bœhm, Physics from solar neutrinos in dark matter direct detection experiments, JHEP 05 (2016) 118 [Erratum ibid. 09 (2016) 048] [arXiv:1604.01025] [INSPIRE].
M. Lindner, F.S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Z′ and dark photon models, JHEP 05 (2018) 098 [arXiv:1803.00060] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].
NuFit webpage, http://www.nu-fit.org.
GAMBIT collaboration, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].
Diver webpage, https://diver.hepforge.org/.
A.G. Beda et al., Upper limit on the neutrino magnetic moment from three years of data from the GEMMA spectrometer, arXiv:1005.2736 [INSPIRE].
CONUS collaboration, First limits on neutrino electromagnetic properties from the CONUS experiment, arXiv:2201.12257 [INSPIRE].
Y. Kaneta and T. Shimomura, On the possibility of a search for the Lμ − Lτ gauge boson at Belle-II and neutrino beam experiments, PTEP 2017 (2017) 053B04 [arXiv:1701.00156] [INSPIRE].
M. Bauer, P. Foldenauer and J. Jaeckel, Hunting all the hidden photons, JHEP 07 (2018) 094 [arXiv:1803.05466] [INSPIRE].
P. Coloma, P.B. Denton, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Curtailing the dark side in non-standard neutrino interactions, JHEP 04 (2017) 116 [arXiv:1701.04828] [INSPIRE].
P. Coloma, M.C. Gonzalez-Garcia and M. Maltoni, Neutrino oscillation constraints on U(1)′ models: from non-standard interactions to long-range forces, JHEP 01 (2021) 114 [arXiv:2009.14220] [INSPIRE].
TEXONO collaboration, Measurement of \( \overline{\nu} \)e-electron scattering cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].
COHERENT collaboration, First measurement of coherent elastic neutrino-nucleus scattering on argon, Phys. Rev. Lett. 126 (2021) 012002 [arXiv:2003.10630] [INSPIRE].
P. Coloma, I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, Improved global fit to non-standard neutrino interactions using COHERENT energy and timing data, JHEP 02 (2020) 023 [Addendum ibid. 12 (2020) 071] [arXiv:1911.09109] [INSPIRE].
CONUS collaboration, Novel constraints on neutrino physics beyond the standard model from the CONUS experiment, JHEP 05 (2022) 085 [arXiv:2110.02174] [INSPIRE].
A.E. Chavarria et al., Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector, Phys. Rev. D 94 (2016) 082007 [arXiv:1608.00957] [INSPIRE].
Borexino collaboration, The Monte Carlo simulation of the Borexino detector, Astropart. Phys. 97 (2018) 136 [arXiv:1704.02291] [INSPIRE].
N. Vinyoles et al., A new generation of standard solar models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].
A. Serenelli webpage, https://www.ice.csic.es/personal/aldos/Solar_Data.html.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2204.03011
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Coloma, P., Gonzalez-Garcia, M.C., Maltoni, M. et al. Constraining new physics with Borexino Phase-II spectral data. J. High Energ. Phys. 2022, 138 (2022). https://doi.org/10.1007/JHEP07(2022)138
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2022)138