Abstract
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at \( \sqrt{s}=7 \) TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be \( q_0^2={{{4.9\pm 0.9\;\mathrm{Ge}{{\mathrm{V}}^2}}} \left/ {{{c^4}}} \right.} \), where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
W. Altmannshofer et al., Symmetries and asymmetries of B → K ∗ μ + μ − decays in the standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].
C. Bobeth, G. Hiller and G. Piranishvili, CP asymmetries in \( \overline{B}\to {{\overline{K}}^{*}}\left( {\to \overline{K}\pi } \right)\overline{\ell}\ell \) and untagged \( {{\overline{B}}_s},{B_s}\to \phi \left( {\to {K^{+}}{K^{-}}} \right)\overline{\ell}\ell \) decays at NLO, JHEP 07 (2008) 106 [arXiv:0805.2525] [INSPIRE].
A. Ali, P. Ball, L. Handoko and G. Hiller, A comparative study of the decays B→(K,K ∗)ℓ+ℓ− in standard model and supersymmetric theories,Phys. Rev. D 61 (2000) 074024 [hep-ph/9910221] [INSPIRE].
F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of B 0 → K ∗0(→ K −π+)ℓ+ℓ− at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060] [INSPIRE].
LHCb collaboration, Differential branching fraction and angular analysis of the decay B 0 → K ∗0 μ + μ −, Phys. Rev. Lett. 108 (2012) 181806 [arXiv:1112.3515] [INSPIRE].
BaBar collaboration, B. Aubert et al., Measurements of branching fractions, rate asymmetries and angular distributions in the rare decays B → Kℓ+ℓ− and B → K ∗ℓ+ℓ−, Phys. Rev. D 73 (2006) 092001 [hep-ex/0604007] [INSPIRE].
BELLE collaboration, J.-T. Wei et al., Measurement of the differential branching fraction and forward-backword asymmetry for B → K (∗)ℓ+ℓ−, Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].
CDF collaboration, T. Aaltonen et al., Measurements of the angular distributions in the decays B → K (∗) μ + μ − at CDF, Phys. Rev. Lett. 108 (2012) 081807 [arXiv:1108.0695] [INSPIRE].
D. Becirevic and E. Schneider, On transverse asymmetries in B → K ∗ℓ+ℓ−, Nucl. Phys. B 854 (2012) 321 [arXiv:1106.3283] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].
R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, IEEE Nucl. Sci. Symp. Conf. Rec. (2010) 1155.
D. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.
GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont, California U.S.A. (1984).
Y. Freund and R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sciences 55 (1997) 119.
LHCb collaboration, Measurement of the fragmentation fraction ratio f s /f d and its dependence on B meson kinematics, JHEP 04 (2013) 001 [arXiv:1301.5286] [INSPIRE].
T. Skwarnicki, A study of the radiative cascade transitions between the \( {\varUpsilon^{\prime }} \) and \( \varUpsilon \) resonances, Ph.D. thesis, Institute of Nuclear Physics, Krakow, Poland (1986), DESY-F31-86-02.
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
BaBar collaboration, B. Aubert et al., Measurement of branching fractions and charge asymmetries for exclusive B decays to charmonium, Phys. Rev. Lett. 94 (2005) 141801 [hep-ex/0412062] [INSPIRE].
C. Bobeth, G. Hiller and D. van Dyk, More benefits of semileptonic rare B decays at low recoil: CP-violation, JHEP 07 (2011) 067 [arXiv:1105.0376] [INSPIRE].
S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of B → K ∗ℓ+ℓ− observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].
M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V ℓ+ℓ− , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].
B. Grinstein and D. Pirjol, Exclusive rare B → K ∗ℓ+ℓ− decays at low recoil: controlling the long-distance effects, Phys. Rev. D 70 (2004) 114005 [hep-ph/0404250] [INSPIRE].
M. Beylich, G. Buchalla and T. Feldmann, Theory of B → K (∗)ℓ+ℓ− decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].
A. Khodjamirian, T. Mannel, A. Pivovarov and Y.-M. Wang, Charm-loop effect in B→K (∗)ℓ+ℓ− and B→K ∗γ,JHEP 09 (2010) 089[arXiv:1006.4945] [INSPIRE].
P. Ball and R. Zwicky, B d,s → ρ, ω, K ∗ , 𝜙 decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].
U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables in the decay mode \( {{\overline{B}}_d}\to {{\overline{K}}^{*0 }}{\ell^{+}}{\ell^{-}} \), JHEP 11 (2008) 032[arXiv:0807.2589] [INSPIRE].
S. Jäger and J. Camalich, On B → V ℓℓ at small dilepton invariant mass, power corrections and new physics, JHEP 05 (2013) 043 [arXiv:1212.2263] [INSPIRE].
BaBar collabortation, B. Aubert et al., Ambiguity-free measurement of cos 2β: Time-integrated and time-dependent angular analyses of B → J/ψ Kπ, Phys. Rev. D 71 (2005) 032005 [hep-ex/0411016] [INSPIRE].
G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].
B. Sen, M. Walker and M. Woodroofe, On the unified method with nuisance parameters, Statistica Sinica 19 (2009) 301.
LHCb collaboration, Measurement of the CP asymmetry in B 0 → K ∗0 μ + μ − decays, Phys. Rev. Lett. 110 (2013) 031801 [arXiv:1210.4492] [INSPIRE].
BaBar collaboration, B. Aubert et al., Measurement of decay amplitudes of B→J/ψK ∗ ,ψ(2S)K ∗ and χ c1 K ∗ with an angular analysis,Phys. Rev. D 76 (2007) 031102 [arXiv:0704.0522] [INSPIRE].
LHCb collaboration, Differential branching fraction and angular analysis of the decay \( B_s^0\to \phi {\mu^{+}}{\mu^{-}} \), JHEP 07 (2013) 084 [arXiv:1305.2168] [INSPIRE].
C.-D. Lu and W. Wang, Analysis of \( B\to K_j^{*}\left( {\to K\pi } \right){\mu^{+}}{\mu^{-}} \) in the higher kaon resonance region, Phys. Rev. D 85 (2012) 034014 [arXiv:1111.1513] [INSPIRE].
D. Becirevic and A. Tayduganov, Impact of \( B\to K_0^{*}{\ell^{+}}{\ell^{-}} \) on the New Physics search in B→K ∗ℓ+ℓ− decay,Nucl. Phys. B 868 (2013) 368[arXiv:1207.4004] [INSPIRE].
T. Blake, U. Egede and A. Shires, The effect of S-wave interference on the B 0 → K ∗0ℓ+ℓ− angular observables, JHEP 03 (2013) 027 [arXiv:1210.5279] [INSPIRE].
J. Matias, On the S-wave pollution of B → K ∗ℓ+ℓ− observables, Phys. Rev. D 86 (2012) 094024 [arXiv:1209.1525] [INSPIRE].
B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist. 7 (1979) 1.
C. Bobeth, G. Hiller, D. van Dyk and C. Wacker, The decay B → Kℓ+ℓ− at low hadronic recoil and model-independent ΔB = 1 constraints, JHEP 01 (2012) 107 [arXiv:1111.2558] [INSPIRE].
M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak b → d and b → s penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].
A. Ali, G. Kramer and G.-h. Zhu, B → K +ℓ+ℓ− decay in soft-collinear effective theory, Eur. Phys. J. C 47 (2006) 625 [hep-ph/0601034] [INSPIRE].
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
ArXiv ePrint: 1304.6325
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
The LHCb collaboration., Aaij, R., Beteta, C.A. et al. Differential branching fraction and angular analysis of the decay B 0 → K ∗0 μ + μ − . J. High Energ. Phys. 2013, 131 (2013). https://doi.org/10.1007/JHEP08(2013)131
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2013)131