Abstract
We present new determinations of the \( \overline{\mathrm{MS}} \) charm quark mass using relativistic QCD sum rules at \( \mathcal{O}\left({\alpha}_s^3\right) \) from the moments of the vector and the pseudoscalar current correlators. We use available experimental measurements from e+ e− collisions and lattice simulation results, respectively. Our analysis of the theoretical uncertainties is based on different implementations of the perturbative series and on independent variations of the renormalization scales for the mass and the strong coupling. Taking into account the resulting set of series to estimate perturbative uncertainties is crucial, since some ways to treat the perturbative expansion can exhibit extraordinarily small scale dependence when the two scales are set equal. As an additional refinement, we address the issue that double scale variation could overestimate the perturbative uncertainties. We supplement the analysis with a test that quantifies the convergence rate of each perturbative series by a single number. We find that this convergence test allows to determine an overall and average convergence rate that is characteristic for the series expansions of each moment, and to discard those series for which the convergence rate is significantly worse. We obtain \( \overline{m_c}\left(\overline{m_c}\right)=1.288\pm 0.020 \) GeV from the vector correlator. The method is also applied to the extraction of the \( \overline{\mathrm{MS}} \) bottom quark mass from the vector correlator. We compute the experimental moments including a modeling uncertainty associated to the continuum region where no data is available. We obtain \( \overline{m_b}\left(\overline{m_b}\right)=4.176\pm 0.023 \) GeV.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
LHC Higgs Cross Section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
A.A. Petrov, S. Pokorski, J.D. Wells, and Z. Zhang, Role of low-energy observables in precision Higgs boson analyses, Phys. Rev. D 91 (2015) 073001 [arXiv:1501.0280] [INSPIRE].
M. Antonelli et al., Flavor physics in the quark sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics. Theoretical foundations, Nucl. Phys. B 147 (1979) 385 [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, QCD and resonance physics: applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].
B. Dehnadi, A.H. Hoang, V. Mateu and S.M. Zebarjad, Charm mass determination from QCD charmonium sum rules at order α 3 s , JHEP 09 (2013) 103 [arXiv:1102.2264] [INSPIRE].
G. Corcella and A.H. Hoang, Uncertainties in the MS-bar bottom quark mass from relativistic sum rules, Phys. Lett. B 554 (2003) 133 [hep-ph/0212297] [INSPIRE].
HPQCD collaboration, I. Allison et al., High-precision charm-quark mass from current-current correlators in lattice and continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].
J.H. Kuhn and M. Steinhauser, Determination of α s and heavy quark masses from recent measurements of R(s), Nucl. Phys. B 619 (2001) 588 [Erratum ibid. B 640 (2002) 415] [hep-ph/0109084] [INSPIRE].
A.O.G. Kallen and A. Sabry, Fourth order vacuum polarization, Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N17 (1955) 1.
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Heavy quark vacuum polarization to three loops, Phys. Lett. B 371 (1996) 93 [hep-ph/9511430] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and O(α 2 S ) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].
R. Boughezal, M. Czakon and T. Schutzmeier, Four-loop tadpoles: applications in QCD, Nucl. Phys. Proc. Suppl. 160 (2006) 160 [hep-ph/0607141] [INSPIRE].
M. Czakon and T. Schutzmeier, Double fermionic contributions to the heavy-quark vacuum polarization, JHEP 07 (2008) 001 [arXiv:0712.2762] [INSPIRE].
A. Maier, P. Maierhofer and P. Marquard, Higher moments of heavy quark correlators in the low energy limit at O(α 2 s ), Nucl. Phys. B 797 (2008) 218 [arXiv:0711.2636] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and C. Sturm, Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD, Eur. Phys. J. C 48 (2006) 107 [hep-ph/0604234] [INSPIRE].
R. Boughezal, M. Czakon and T. Schutzmeier, Charm and bottom quark masses from perturbative QCD, Phys. Rev. D 74 (2006) 074006 [hep-ph/0605023] [INSPIRE].
C. Sturm, Moments of heavy quark current correlators at four-loop order in perturbative QCD, JHEP 09 (2008) 075 [arXiv:0805.3358] [INSPIRE].
A. Maier, P. Maierhofer and P. Marqaurd, The second physical moment of the heavy quark vector correlator at O(α 3 s ), Phys. Lett. B 669 (2008) 88 [arXiv:0806.3405] [INSPIRE].
A. Maier, P. Maierhofer, P. Marquard and A.V. Smirnov, Low energy moments of heavy quark current correlators at four loops, Nucl. Phys. B 824 (2010) 1 [arXiv:0907.2117] [INSPIRE].
A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy quark vacuum polarization function at O(α 2 s ) and O(α 3 s ), Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].
Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at O(α 3 s ), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].
D. Greynat and S. Peris, Resummation of threshold, low- and high-energy expansions for heavy-quark correlators, Phys. Rev. D 82 (2010) 034030 [Erratum ibid. D 82 (2010) 119907] [arXiv:1006.0643] [INSPIRE].
D. Greynat, P. Masjuan and S. Peris, Analytic reconstruction of heavy-quark two-point functions at O(α 3 s ), Phys. Rev. D 85 (2012) 054008 [arXiv:1104.3425] [INSPIRE].
D.J. Broadhurst, P.A. Baikov, V.A. Ilyin, J. Fleischer, O.V. Tarasov and V.A. Smirnov, Two loop gluon condensate contributions to heavy quark current correlators: exact results and approximations, Phys. Lett. B 329 (1994) 103 [hep-ph/9403274] [INSPIRE].
S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha and K. Schilcher, QCD sum rule determination of the charm-quark mass, Phys. Rev. D 83 (2011) 074014 [arXiv:1102.3835] [INSPIRE].
K.G. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].
C. McNeile, C.T.H. Davies, E. Follana, K. Hornbostel and G.P. Lepage, High-precision c and b masses and QCD coupling from current-current correlators in lattice and continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].
B. Chakraborty et al., High-precision quark masses and QCD coupling from n f = 4 lattice QCD, Phys. Rev. D 91 (2015) 054508 [arXiv:1408.4169] [INSPIRE].
B. Colquhoun, R.J. Dowdall, C.T.H. Davies, K. Hornbostel and G.P. Lepage, Υ and Υ′ Leptonic Widths, a b u and m b from full lattice QCD, Phys. Rev. D 91 (2015) 074514 [arXiv:1408.5768] [INSPIRE].
S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha and K. Schilcher, Bottom-quark mass from finite energy QCD sum rules, Phys. Rev. D 85 (2012) 034003 [arXiv:1111.5742] [INSPIRE].
F. Le Diberder and A. Pich, The perturbative QCD prediction to R τ revisited, Phys. Lett. B 286 (1992) 147 [INSPIRE].
A.A. Pivovarov, Renormalization group analysis of the τ lepton decay within QCD, Z. Phys. C 53 (1992) 461 [hep-ph/0302003] [INSPIRE].
E. Braaten, S. Narison and A. Pich, QCD analysis of the τ hadronic width, Nucl. Phys. B 373 (1992) 581 [INSPIRE].
S. Narison and A. Pich, QCD formulation of the τ decay and determination of Λ M S , Phys. Lett. B 211 (1988) 183 [INSPIRE].
E. Braaten, The perturbative QCD corrections to the ratio R for τ decay, Phys. Rev. D 39 (1989) 1458 [INSPIRE].
E. Braaten, QCD predictions for the decay of the τ lepton, Phys. Rev. Lett. 60 (1988) 1606 [INSPIRE].
A.H. Hoang and M. Jamin, MSBAR charm mass from charmonium sum rules with contour improvement, Phys. Lett. B 594 (2004) 127 [hep-ph/0403083] [INSPIRE].
V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Charmonium and gluons: basic experimental facts and theoretical introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].
P.A. Baikov, V.A. Ilyin and V.A. Smirnov, Gluon condensate fit from the two loop correction to the coefficient function, Phys. Atom. Nucl. 56 (1993) 1527 [INSPIRE].
K. Chetyrkin et al., Precise charm- and bottom-quark masses: theoretical and experimental uncertainties, Theor. Math. Phys. 170 (2012) 217 [arXiv:1010.6157] [INSPIRE].
S. Narison and R. Tarrach, Higher dimensional renormalization group invariant vacuum condensates in quantum chromodynamics, Phys. Lett. B 125 (1983) 217 [INSPIRE].
B.L. Ioffe, QCD at low energies, Prog. Part. Nucl. Phys. 56 (2006) 232 [hep-ph/0502148] [INSPIRE].
J.H. Kuhn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].
B. Dehnadi, A. H. Hoang, and V. Mateu, Charm and bottom masses from sum rules with a convergence test, arXiv:1411.5597.
BaBar collaboration, B. Aubert et al., Measurement of the \( {e}^{+}{e}^{-}\to b\overline{b} \) cross section between \( \sqrt{s}=10.54 \) GeV and 11.20 GeV, Phys. Rev. Lett. 102 (2009) 012001 [arXiv:0809.4120] [INSPIRE].
A. Hoang, P. Ruiz-Femenia and M. Stahlhofen, Renormalization group improved bottom mass from Υ sum rules at NNLL order, JHEP 10 (2012) 188 [arXiv:1209.0450] [INSPIRE].
Particle Data Group collaboration, K. Olive et al., Review of particle physics, Chin. Phys. C38 (2014) 090001 [INSPIRE].
CLEO collaboration, J.L. Rosner et al., Di-electron widths of the Υ(1S, 2S, 3S) resonances, Phys. Rev. Lett. 96 (2006) 092003 [hep-ex/0512056] [INSPIRE].
CLEO collaboration, R. Ammar et al., A Measurement of the total cross-section for e + e − → hadrons at \( \sqrt{s}=10.52 \) GeV, Phys. Rev. D 57 (1998) 1350 [hep-ex/9707018] [INSPIRE].
CLEO collaboration, D. Besson et al., Observation of new structure in the e + e − annihilation cross-section above \( B\overline{B} \) threshold, Phys. Rev. Lett. 54 (1985) 381 [INSPIRE].
CLEO collaboration, G.S. Huang et al., Measurement of \( B\left(Y(5S)\to {B}_s^{\ast }{\overline{B}}_s^{\ast}\right) \) using ϕ mesons, Phys. Rev. D 75 (2007) 012002 [hep-ex/0610035] [INSPIRE].
D.M.J. Lovelock et al., Masses, widths, and leptonic widths of the higher Υ resonances, Phys. Rev. Lett. 54 (1985) 377 [INSPIRE].
S. Jadach and B.F.L. Ward, Yfs2: the second order Monte Carlo for fermion pair production at LEP/SLC with the initial state radiation of two hard and multiple soft photons, Comput. Phys. Commun. 56 (1990) 351 [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and T. Teubner, Extracting α s from electron-positron annihilation around 10 GeV, Phys. Rev. D 56 (1997) 3011 [hep-ph/9609411] [INSPIRE].
Tevatron Electroweak Working Group, CDF, DELPHI, SLD Electroweak and Heavy Flavour Groups, ALEPH, LEP Electroweak Working Group, SLD, OPAL, D0, L3 collaboration, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].
W. Bernreuther and W. Wetzel, Order α 2 s massive quark contribution to the vacuum polarization of massless quarks, Z. Phys. C 11 (1981) 113.
S.G. Gorishnii, A.L. Kataev and S.A. Larin, Three loop corrections of order O(M 2) to the correlator of electromagnetic quark currents, Nuovo Cim. A 92 (1986) 119 [INSPIRE].
K.G. Chetyrkin and A. Kwiatkowski, Mass corrections to the tau decay rate, Z. Phys. C 59 (1993) 525 [hep-ph/9805232] [INSPIRE].
K.G. Chetyrkin and J.H. Kuhn, Quartic mass corrections to R had, Nucl. Phys. B 432 (1994) 337 [hep-ph/9406299] [INSPIRE].
K.G. Chetyrkin, R.V. Harlander and J.H. Kuhn, Quartic mass corrections to R had at order α 3 s , Nucl. Phys. B 586 (2000) 56 [Erratum ibid. B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].
M. Beneke, A. Maier, J. Piclum and T. Rauh, The bottom-quark mass from non-relativistic sum rules at NNNLO, Nucl. Phys. B 891 (2015) 42 [arXiv:1411.3132] [INSPIRE].
R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with power corrections and a precision global fit for α s (m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].
R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision thrust cumulant moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].
T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J. C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].
A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, A precise determination of α s from the C-parameter distribution, arXiv:1501.0411.
S. Alekhin, J. Blumlein and S. Moch, Parton distribution functions and benchmark cross sections at NNLO, Phys. Rev. D 86 (2012) 054009 [arXiv:1202.2281] [INSPIRE].
S. Bethke et al., Workshop on precision measurements of α s , arXiv:1110.0016.
S. Bethke, World summary of α s (2012), Nucl. Phys. Proc. Suppl. 234 (2013) 229 [arXiv:1210.0325] [INSPIRE].
A. Pich, Review of α s determinations, PoS(ConfinementX)022 [arXiv:1303.2262] [INSPIRE].
Wolfram Research Inc., Mathematica edition: version 10.0, Champaign, Illinois, U.S.A. (2014).
Free Software Foundation Inc., GFortran, Gnu compiler collection (gcc), Version 5.0.0 (2014).
S. Bodenstein, J. Bordes, C.A. Dominguez, J. Penarrocha and K. Schilcher, Charm-quark mass from weighted finite energy QCD sum rules, Phys. Rev. D 82 (2010) 114013 [arXiv:1009.4325] [INSPIRE].
S. Narison, Gluon condensates and c, b quark masses from quarkonia ratios of moments, Phys. Lett. B 693 (2010) 559 [Erratum ibid. 705 (2011) 544] [arXiv:1004.5333] [INSPIRE].
S. Narison, Gluon condensates and m c,b from QCD-moments and their ratios to order alpha 3 s and < G 4 >, Phys. Lett. B 706 (2012) 412 [arXiv:1105.2922] [INSPIRE].
A. Signer, The charm quark mass from non-relativistic sum rules, Phys. Lett. B 672 (2009) 333 [arXiv:0810.1152] [INSPIRE].
A.A. Penin and N. Zerf, Bottom quark mass from Υ sum rules to \( \mathcal{O}\left({\alpha}_s^3\right) \), JHEP 04 (2014) 120 [arXiv:1401.7035] [INSPIRE].
J. Erler and M.-x. Luo, Precision determination of heavy quark masses and the strong coupling constant, Phys. Lett. B 558 (2003) 125 [hep-ph/0207114] [INSPIRE].
J. Bordes, J. Penarrocha and K. Schilcher, Bottom quark mass and QCD duality, Phys. Lett. B 562 (2003) 81 [hep-ph/0212083] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1504.07638
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Dehnadi, B., Hoang, A.H. & Mateu, V. Bottom and charm mass determinations with a convergence test. J. High Energ. Phys. 2015, 155 (2015). https://doi.org/10.1007/JHEP08(2015)155
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2015)155