Abstract
Machine learning technology has the potential to dramatically optimise event generation and simulations. We continue to investigate the use of neural networks to approximate matrix elements for high-multiplicity scattering processes. We focus on the case of loop-induced diphoton production through gluon fusion, and develop a realistic simulation method that can be applied to hadron collider observables. Neural networks are trained using the one-loop amplitudes implemented in the NJet C++ library, and interfaced to the Sherpa Monte Carlo event generator, where we perform a detailed study for 2 → 3 and 2 → 4 scattering problems. We also consider how the trained networks perform when varying the kinematic cuts effecting the phase space and the reliability of the neural network simulations.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
C. F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].
G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].
G. Cullen et al., GOSAM-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
A. Denner, J.-N. Lang and S. Uccirati, Recola2: REcursive Computation of One-Loop Amplitudes 2, Comput. Phys. Commun. 224 (2018) 346 [arXiv:1711.07388] [INSPIRE].
T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].
T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the production of a photon pair in association with two jets, Phys. Rev. Lett. 111 (2013) 222002 [arXiv:1308.3660] [INSPIRE].
S. Badger, A. Guffanti and V. Yundin, Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the Large Hadron Collider, JHEP 03 (2014) 122 [arXiv:1312.5927] [INSPIRE].
Z. Bern et al., Next-to-leading order γγ + 2-jet production at the LHC, Phys. Rev. D 90 (2014) 054004 [arXiv:1402.4127] [INSPIRE].
B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop leading colour QCD corrections to \( q\overline{q} \) → γγg and qg → γγq, JHEP 04 (2021) 201 [arXiv:2102.01820] [INSPIRE].
H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, Two-loop leading-colour QCD helicity amplitudes for two-photon plus jet production at the LHC, JHEP 07 (2021) 164 [arXiv:2103.04319] [INSPIRE].
B. Agarwal, F. Buccioni, A. von Manteuffel and L. Tancredi, Two-loop helicity amplitudes for diphoton plus jet production in full color, arXiv:2105.04585 [INSPIRE].
H. A. Chawdhry, M. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to diphoton production with an additional jet at the LHC, arXiv:2105.06940 [INSPIRE].
S. Badger et al., Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders, arXiv:2106.08664 [INSPIRE].
NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [INSPIRE].
S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers, JHEP 08 (2017) 088 [arXiv:1703.09252] [INSPIRE].
S. P. Jones, M. Kerner and G. Luisoni, Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence, Phys. Rev. Lett. 120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].
G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni and L. Scyboz, Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD including parton shower effects, JHEP 06 (2019) 066 [arXiv:1903.08137] [INSPIRE].
J. Bendavid, Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks, arXiv:1707.00028 [INSPIRE].
M. D. Klimek and M. Perelstein, Neural Network-Based Approach to Phase Space Integration, SciPost Phys. 9 (2020) 053 [arXiv:1810.11509] [INSPIRE].
I.-K. Chen, M. D. Klimek and M. Perelstein, Improved Neural Network Monte Carlo Simulation, SciPost Phys. 10 (2021) 023 [arXiv:2009.07819] [INSPIRE].
D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, in 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML’15 (2015), pp. 1530-1538 arXiv:1505.05770 [https://www.jmlr.org/].
L. Dinh, D. Krueger and Y. Bengio, NICE: Non-linear independent components estimation, in 3rd International Conference on Learning Representations, ICLR’15 (2015). arXiv:1410.8516.
C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional Integration and Sampling with Normalizing Flows, Mach. Learn. Sci. Tech. 1 (2020) 045023 [arXiv:2001.05486] [INSPIRE].
E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring phase space with Neural Importance Sampling, SciPost Phys. 8 (2020) 069 [arXiv:2001.05478] [INSPIRE].
C. Gao, S. Höche, J. Isaacson, C. Krause and H. Schulz, Event Generation with Normalizing Flows, Phys. Rev. D 101 (2020) 076002 [arXiv:2001.10028] [INSPIRE].
I. J. Goodfellow et al., Generative Adversarial Networks, in Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K. Q. Weinberger eds., Curran Associates Inc. (2014) arXiv:1406.2661 [INSPIRE].
S. Otten et al., Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer, Nature Commun. 12 (2021) 2985 [arXiv:1901.00875] [INSPIRE].
B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-specific datasets with Generative Adversarial Networks, arXiv:1901.05282 [INSPIRE].
R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DijetGAN: A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC, JHEP 08 (2019) 110 [arXiv:1903.02433] [INSPIRE].
A. Butter, T. Plehn and R. Winterhalder, How to GAN LHC Events, SciPost Phys. 7 (2019) 075 [arXiv:1907.03764] [INSPIRE].
S. Carrazza and F. A. Dreyer, Lund jet images from generative and cycle-consistent adversarial networks, Eur. Phys. J. C 79 (2019) 979 [arXiv:1909.01359] [INSPIRE].
SHiP collaboration, Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks, 2019 JINST 14 P11028 [arXiv:1909.04451] [INSPIRE].
A. Butter and T. Plehn, Generative Networks for LHC events, arXiv:2008.08558 [INSPIRE].
A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman and T. Plehn, GANplifying Event Samples, SciPost Phys. 10 (2021) 139 [arXiv:2008.06545] [INSPIRE].
Y. Alanazi et al., AI-based Monte Carlo event generator for electron-proton scattering, arXiv:2008.03151 [INSPIRE].
A. Butter, Generative Models in Event Simulation, PoS LHCP2020 (2021) 055 [INSPIRE].
Y. Alanazi et al., Simulation of electron-proton scattering events by a Feature-Augmented and Transformed Generative Adversarial Network (FAT-GAN), arXiv:2001.11103 [INSPIRE].
T. Lebese, B. Mellado and X. Ruan, The use of Generative Adversarial Networks to characterise new physics in multi-lepton final states at the LHC, arXiv:2105.14933 [INSPIRE].
M. Backes, A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Unweighting, SciPost Phys. 10 (2021) 089 [arXiv:2012.07873] [INSPIRE].
B. Stienen and R. Verheyen, Phase Space Sampling and Inference from Weighted Events with Autoregressive Flows, SciPost Phys. 10 (2021) 038 [arXiv:2011.13445] [INSPIRE].
A. Butter, T. Plehn and R. Winterhalder, How to GAN Event Subtraction, arXiv:1912.08824 [INSPIRE].
M. Bellagente, M. Haußmann, M. Luchmann and T. Plehn, Understanding Event-Generation Networks via Uncertainties, arXiv:2104.04543 [INSPIRE].
E. Bothmann and L. Debbio, Reweighting a parton shower using a neural network: the final-state case, JHEP 01 (2019) 033 [arXiv:1808.07802] [INSPIRE].
L. de Oliveira, M. Paganini and B. Nachman, Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis, Comput. Softw. Big Sci. 1 (2017) 4 [arXiv:1701.05927] [INSPIRE].
J. W. Monk, Deep Learning as a Parton Shower, JHEP 12 (2018) 021 [arXiv:1807.03685] [INSPIRE].
K. Dohi, Variational Autoencoders for Jet Simulation, arXiv:2009.04842 [INSPIRE].
B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweighting with preserved uncertainties, Phys. Rev. D 102 (2020) 076004 [arXiv:2007.11586] [INSPIRE].
S. Otten, K. Rolbiecki, S. Caron, J.-S. Kim, R. Ruiz De Austri and J. Tattersall, DeepXS: Fast approximation of MSSM electroweak cross sections at NLO, Eur. Phys. J. C 80 (2020) 12 [arXiv:1810.08312] [INSPIRE].
A. Buckley et al., Xsec: the cross-section evaluation code, Eur. Phys. J. C 80 (2020) 1106 [arXiv:2006.16273] [INSPIRE].
F. Bishara and M. Montull, (Machine) Learning amplitudes for faster event generation, arXiv:1912.11055 [INSPIRE].
S. Badger and J. Bullock, Using neural networks for efficient evaluation of high multiplicity scattering amplitudes, JHEP 06 (2020) 114 [arXiv:2002.07516] [INSPIRE].
M. Feickert and B. Nachman, A Living Review of Machine Learning for Particle Physics, arXiv:2102.02770 [INSPIRE].
S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].
D. de Florian and Z. Kunszt, Two photons plus jet at LHC: The NNLO contribution from the gg initiated process, Phys. Lett. B 460 (1999) 184 [hep-ph/9905283] [INSPIRE].
Z. Bern, A. De Freitas and L. J. Dixon, Two loop amplitudes for gluon fusion into two photons, JHEP 09 (2001) 037 [hep-ph/0109078] [INSPIRE].
T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].
Z. Bern, L. J. Dixon and D. A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].
E. Byckling and K. Kajantie, Particle Kinematics: (Chapters I-VI, X), University of Jyvaskyla, Jyvaskyla Finland (1971).
S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].
M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) [https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673740/rpp2020-vol2-2015-2092_18.pdf].
F. Chollet et al., Keras, (2015) https://github.com/fchollet/keras.
M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, (2015) https://www.tensorflow.org/.
D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, arXiv:1412.6980 [INSPIRE].
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press (2016).
G. Guennebaud et al., Eigen v3, (2010) http://eigen.tuxfamily.org.
T. Binoth et al., A Proposal for a Standard Interface between Monte Carlo Tools and One-Loop Programs, Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307] [INSPIRE].
S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun. 185 (2014) 560 [arXiv:1308.3462] [INSPIRE].
A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].
C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].
ATLAS collaboration, Measurements of integrated and differential cross sections for isolated photon pair production in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 112005 [arXiv:1704.03839] [INSPIRE].
R. Kleiss, W. J. Stirling and S. D. Ellis, A New Monte Carlo Treatment of Multiparticle Phase Space at High-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].
G. P. Lepage, VEGAS: An Adaptive Multidimensional Integration Program, (1980) [INSPIRE].
T. Ohl, Vegas revisited: Adaptive Monte Carlo integration beyond factorization, Comput. Phys. Commun. 120 (1999) 13 [hep-ph/9806432] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
Z. Bern et al., Ntuples for NLO Events at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].
D. Maître, G. Heinrich and M. Johnson, N(N)LO event files: applications and prospects, PoS LL2016 (2016) 016 [arXiv:1607.06259] [INSPIRE].
V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10, Omnipress, Madison, WI, U.S.A. (2010) DOI.
f G. Van Rossum and F. L. Drake, Python 3 Reference Manual, CreateSpace, Scotts Valley, CA U.S.A. (2009).
J. D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9 (2007) 90 [INSPIRE].
C. R. Harris et al., Array programming with NumPy, Nature 585 (2020) 357 [arXiv:2006.10256] [INSPIRE].
The pandas development team, pandas-dev/pandas: Pandas, (2020) https://doi.org/10.5281/zenodo.3509134.
W. McKinney, Data Structures for Statistical Computing in Python, in Proceedings of the 9th Python in Science Conference, S. van der Walt and J. Millman eds. (2010) DOI.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2106.09474
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Aylett-Bullock, J., Badger, S. & Moodie, R. Optimising simulations for diphoton production at hadron colliders using amplitude neural networks. J. High Energ. Phys. 2021, 66 (2021). https://doi.org/10.1007/JHEP08(2021)066
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2021)066