Abstract
We present fully differential next-to-leading order results for Higgs production in association with a Z boson in gluon fusion. Our two-loop virtual contributions are evaluated numerically using sector decomposition, including full top-quark mass effects, and supplemented at high pT by an analytic high-energy expansion to order \( {m}_Z^4,{m}_H^4,{m}_t^{32} \). Using the expanded results we also present a study of the top-quark mass scheme uncertainty at large pT.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of H → \( b\overline{b} \) decays and VH production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].
CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].
ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays to charm quarks with the ATLAS detector, Tech. Rep. ATLAS-CONF-2021-021, CERN, Geneva, Switzerland (2021).
CMS collaboration, Direct search for the Standard Model Higgs boson decaying to a charm quark-antiquark pair, Tech. Rep. CMS-PAS-HIG-21-008, CERN, Geneva, Switzerland (2022).
L. Altenkamp, S. Dittmaier, R. V. Harlander, H. Rzehak and T. J. E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, JHEP 02 (2013) 078 [arXiv:1211.5015] [INSPIRE].
R. V. Harlander, S. Liebler and T. Zirke, Higgs strahlung at the Large Hadron Collider in the 2-Higgs-doublet model, JHEP 02 (2014) 023 [arXiv:1307.8122] [INSPIRE].
C. Englert, M. McCullough and M. Spannowsky, Gluon-initiated associated production boosts Higgs physics, Phys. Rev. D 89 (2014) 013013 [arXiv:1310.4828] [INSPIRE].
W. Bizoń, F. Caola, K. Melnikov and R. Röntsch, Anomalous couplings in associated VH production with Higgs boson decay to massive b quarks at NNLO in QCD, Phys. Rev. D 105 (2022) 014023 [arXiv:2106.06328] [INSPIRE].
R. Gauld, A. Gehrmann-De Ridder, E. W. N. Glover, A. Huss and I. Majer, VH +jet production in hadron-hadron collisions up to order \( {\alpha}_s^3 \) in perturbative QCD, JHEP 03 (2022) 008 [arXiv:2110.12992] [INSPIRE].
G. Heinrich, Collider physics at the precision frontier, Phys. Rept. 922 (2021) 1 [arXiv:2009.00516] [INSPIRE].
ATLAS collaboration, Measurement of VH, H → \( b\overline{b} \) production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector, JHEP 05 (2019) 141 [arXiv:1903.04618] [INSPIRE].
ATLAS collaboration, Measurement of the associated production of a Higgs boson decaying into b-quarks with a vector boson at high transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 816 (2021) 136204 [arXiv:2008.02508] [INSPIRE].
ATLAS collaboration, Measurements of WH and ZH production in the H → \( b\overline{b} \) decay channel in pp collisions at 13 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 178 [arXiv:2007.02873] [INSPIRE].
ATLAS collaboration, Combination of measurements of Higgs boson production in association with a W or Z boson in the \( b\overline{b} \) decay channel with the ATLAS experiment at \( \sqrt{s} \) = 13 TeV, Tech. Rep. ATLAS-CONF-2021-051, CERN, Geneva, Switzerland (2021).
ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector, arXiv:2201.11428 [INSPIRE].
CMS collaboration, Search for the associated production of the Higgs boson and a vector boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV via Higgs boson decays to τ leptons, JHEP 06 (2019) 093 [arXiv:1809.03590] [INSPIRE].
CMS collaboration, Combined Higgs boson production and decay measurements with up to 137 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-HIG-19-005, CERN, Geneva, Switzerland (2020).
G. Luisoni, P. Nason, C. Oleari and F. Tramontano, HW ± /HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP 10 (2013) 083 [arXiv:1306.2542] [INSPIRE].
A. Denner, S. Dittmaier, S. Kallweit and A. Mück, HAWK 2.0: a Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders, Comput. Phys. Commun. 195 (2015) 161 [arXiv:1412.5390] [INSPIRE].
B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2HDM, JHEP 06 (2015) 065 [arXiv:1503.01656] [INSPIRE].
D. Goncalves, F. Krauss, S. Kuttimalai and P. Maierhöfer, Higgs-strahlung: merging the NLO Drell-Yan and loop-induced 0 + 1 jet multiplicities, Phys. Rev. D 92 (2015) 073006 [arXiv:1509.01597] [INSPIRE].
J. M. Campbell, R. K. Ellis and C. Williams, Associated production of a Higgs boson at NNLO, JHEP 06 (2016) 179 [arXiv:1601.00658] [INSPIRE].
F. Granata, J. M. Lindert, C. Oleari and S. Pozzorini, NLO QCD+EW predictions for HV and HV +jet production including parton-shower effects, JHEP 09 (2017) 012 [arXiv:1706.03522] [INSPIRE].
W. Astill, W. Bizoń, E. Re and G. Zanderighi, NNLOPS accurate associated HZ production with H → \( b\overline{b} \) decay at NLO, JHEP 11 (2018) 157 [arXiv:1804.08141] [INSPIRE].
A. V. Gritsan, J. Roskes, U. Sarica, M. Schulze, M. Xiao and Y. Zhou, New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production, Phys. Rev. D 102 (2020) 056022 [arXiv:2002.09888] [INSPIRE].
B. A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions, Phys. Rev. D 42 (1990) 2253 [INSPIRE].
F. F. Freitas, C. K. Khosa and V. Sanz, Exploring the Standard Model EFT in VH production with machine learning, Phys. Rev. D 100 (2019) 035040 [arXiv:1902.05803] [INSPIRE].
K.-P. Xie and B. Yan, Probing the electroweak symmetry breaking with Higgs production at the LHC, Phys. Lett. B 820 (2021) 136515 [arXiv:2104.12689] [INSPIRE].
B. Yan and C. P. Yuan, Anomalous \( Zb\overline{b} \) couplings: from LEP to LHC, Phys. Rev. Lett. 127 (2021) 051801 [arXiv:2101.06261] [INSPIRE].
L. Chen, G. Heinrich, S. P. Jones, M. Kerner, J. Klappert and J. Schlenk, ZH production in gluon fusion: two-loop amplitudes with full top quark mass dependence, JHEP 03 (2021) 125 [arXiv:2011.12325] [INSPIRE].
J. Davies, G. Mishima and M. Steinhauser, Virtual corrections to gg → ZH in the high-energy and large-mt limits, JHEP 03 (2021) 034 [arXiv:2011.12314] [INSPIRE].
L. Alasfar, G. Degrassi, P. P. Giardino, R. Gröber and M. Vitti, Virtual corrections to gg → ZH via a transverse momentum expansion, JHEP 05 (2021) 168 [arXiv:2103.06225] [INSPIRE].
L. Bellafronte, G. Degrassi, P. P. Giardino, R. Gröber and M. Vitti, Gluon fusion production at NLO: merging the transverse momentum and the high-energy expansions, JHEP 07 (2022) 069 [arXiv:2202.12157] [INSPIRE].
G. Wang, X. Xu, Y. Xu and L. L. Yang, Next-to-leading order corrections for gg → ZH with top quark mass dependence, Phys. Lett. B 829 (2022) 137087 [arXiv:2107.08206] [INSPIRE].
G. Wang, Y. Wang, X. Xu, Y. Xu and L. L. Yang, Efficient computation of two-loop amplitudes for Higgs boson pair production, Phys. Rev. D 104 (2021) L051901 [arXiv:2010.15649] [INSPIRE].
A. Hasselhuhn, T. Luthe and M. Steinhauser, On top quark mass effects to gg → ZH at NLO, JHEP 01 (2017) 073 [arXiv:1611.05881] [INSPIRE].
J. Davies et al., Double Higgs boson production at NLO: combining the exact numerical result and high-energy expansion, JHEP 11 (2019) 024 [arXiv:1907.06408] [INSPIRE].
R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
A. V. Smirnov and F. S. Chuharev, FIRE6: Feynman Integral REduction with modular arithmetic, Comput. Phys. Commun. 247 (2020) 106877 [arXiv:1901.07808] [INSPIRE].
B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].
L. Chen, A prescription for projectors to compute helicity amplitudes in D dimensions, Eur. Phys. J. C 81 (2021) 417 [arXiv:1904.00705] [INSPIRE].
P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].
J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun. 266 (2021) 108024 [arXiv:2008.06494] [INSPIRE].
F. Lange, P. Maierhöfer and J. Usovitsch, Developments since Kira 2.0, arXiv:2111.01045 [INSPIRE].
J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys. Commun. 247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].
J. Klappert, S. Y. Klein and F. Lange, Interpolation of dense and sparse rational functions and other improvements in FireFly, Comput. Phys. Commun. 264 (2021) 107968 [arXiv:2004.01463] [INSPIRE].
A. von Manteuffel, E. Panzer and R. M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].
A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner and J. Schlenk, A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun. 240 (2019) 120 [arXiv:1811.11720] [INSPIRE].
Z. Li, J. Wang, Q.-S. Yan and X. Zhao, Efficient numerical evaluation of Feynman integrals, Chin. Phys. C 40 (2016) 033103 [arXiv:1508.02512] [INSPIRE].
G. Heinrich et al., Expansion by regions with pySecDec, Comput. Phys. Commun. 273 (2022) 108267 [arXiv:2108.10807] [INSPIRE].
S. Catani and M. H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].
G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].
G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C 74 (2014) 3001 [arXiv:1404.7096] [INSPIRE].
S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
O. Brein, R. Harlander, M. Wiesemann and T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J. C 72 (2012) 1868 [arXiv:1111.0761] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
S. Amoroso et al., Les Houches 2019. Physics at TeV colliders: Standard Model working group report, in 11th Les Houches workshop on physics at TeV colliders: PhysTeV Les Houches, (2020) [arXiv:2003.01700] [INSPIRE].
J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J. C 79 (2019) 459 [arXiv:1811.05692] [INSPIRE].
J. Baglio et al., Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections, JHEP 04 (2020) 181 [arXiv:2003.03227] [INSPIRE].
J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, J. Ronca and M. Spira, gg → HH: combined uncertainties, Phys. Rev. D 103 (2021) 056002 [arXiv:2008.11626] [INSPIRE].
S. Catani, S. Devoto, M. Grazzini, S. Kallweit and J. Mazzitelli, Top-quark pair hadroproduction at NNLO: differential predictions with the \( \overline{M}S \) mass, JHEP 08 (2020) 027 [arXiv:2005.00557] [INSPIRE].
A. Saibel, S.-O. Moch and M. Aldaya Martin, Cross-sections for \( t\overline{t}H \) production with the top quark \( \overline{M}S \) mass, Phys. Lett. B 832 (2022) 137195 [arXiv:2111.12505] [INSPIRE].
S. Alioli et al., Phenomenology of \( t\overline{t}j \) + X production at the LHC, JHEP 05 (2022) 146 [arXiv:2202.07975] [INSPIRE].
K. G. Chetyrkin, J. H. Kühn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].
J. Davies, G. Mishima, M. Steinhauser and D. Wellmann, Double Higgs boson production at NLO in the high-energy limit: complete analytic results, JHEP 01 (2019) 176 [arXiv:1811.05489] [INSPIRE].
T. Liu, S. Modi and A. A. Penin, Higgs boson production and quark scattering amplitudes at high energy through the next-to-next-to-leading power in quark mass, JHEP 02 (2022) 170 [arXiv:2111.01820] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2204.05225
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chen, L., Davies, J., Heinrich, G. et al. ZH production in gluon fusion at NLO in QCD. J. High Energ. Phys. 2022, 56 (2022). https://doi.org/10.1007/JHEP08(2022)056
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)056