Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stability of scalar fields in warped extra dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

This work sets up a general theoretical framework to study stability of models with a warped extra dimension where N scalar fields couple minimally to gravity. Our analysis encompasses Randall-Sundrum models with branes and bulk scalars, and general domain-wall models. We derive the Schrödinger equation governing the spin-0 spectrum of perturbations of such a system. This result is specialized to potentials generated using fake supergravity, and we show that models without branes are free of tachyonic modes. Turning to the existence of zero modes, we prove a criterion which relates the number of normalizable zero modes to the parities of the scalar fields. Constructions with definite parity and only odd scalars are shown to be free of zero modes and are hence perturbatively stable. We give two explicit examples of domain-wall models with a soft wall, one which admits a zero mode and one which does not. The latter is an example of a model that stabilizes a compact extra dimension using only bulk scalars and does not require dynamical branes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  4. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V.A. Rubakov and M.E. Shaposhnikov, Do we live inside a domain wall?, Phys. Lett. B 125 (1983) 136 [SPIRES].

    ADS  Google Scholar 

  7. A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. R. Davies, D.P. George and R.R. Volkas, The standard model on a domain-wall brane, Phys. Rev. D 77 (2008) 124038 [arXiv:0705.1584] [SPIRES].

    ADS  Google Scholar 

  9. C. Csáki, J. Erlich, T.J. Hollowood and Y. Shirman, Universal aspects of gravity localized on thick branes, Nucl. Phys. B 581 (2000) 309 [hep-th/0001033] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear Confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [SPIRES].

    ADS  Google Scholar 

  11. B. Batell and T. Gherghetta, Dynamical soft-wall AdS/QCD, Phys. Rev. D 78 (2008) 026002 [arXiv:0801.4383] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. A. Falkowski and M. Pérez-Victoria, Electroweak breaking on a soft wall, JHEP 12 (2008) 107 [arXiv:0806.1737] [SPIRES].

    Article  ADS  Google Scholar 

  13. B. Batell, T. Gherghetta and D. Sword, The soft-wall standard model, Phys. Rev. D 78 (2008) 116011 [arXiv:0808.3977] [SPIRES].

    ADS  Google Scholar 

  14. A. Delgado and D. Diego, Fermion mass hierarchy from the soft wall, Phys. Rev. D 80 (2009) 024030 [arXiv:0905.1095] [SPIRES].

    ADS  Google Scholar 

  15. S. Mert Aybat and J. Santiago, Bulk fermions in warped models with a soft wall, Phys. Rev. D 80 (2009) 035005 [arXiv:0905.3032] [SPIRES].

    ADS  Google Scholar 

  16. T. Gherghetta and D. Sword, Fermion flavor in soft-wall AdS, Phys. Rev. D 80 (2009) 065015 [arXiv:0907.3523] [SPIRES].

    ADS  Google Scholar 

  17. J.A. Cabrer, G. von Gersdorff and M. Quirós, Soft-wall stabilization, New J. Phys. 12 (2010) 075012 [arXiv:0907.5361] [SPIRES].

    Article  ADS  Google Scholar 

  18. G. von Gersdorff, From soft walls to infrared branes, arXiv:1005.5134 [SPIRES].

  19. G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Falkowski and M. Pérez-Victoria, Holographic unhiggs, Phys. Rev. D 79 (2009) 035005 [arXiv:0810.4940] [SPIRES].

    ADS  Google Scholar 

  21. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  22. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [SPIRES].

    ADS  Google Scholar 

  23. M. Toharia and M. Trodden, Metastable kinks in the orbifold, Phys. Rev. Lett. 100 (2008) 041602 [arXiv:0708.4005] [SPIRES].

    Article  ADS  Google Scholar 

  24. M. Toharia and M. Trodden, Existence and stability of non-trivial scalar field configurations in orbifolded extra dimensions, Phys. Rev. D 77 (2008) 025029 [arXiv:0708.4008] [SPIRES].

    ADS  Google Scholar 

  25. S. Kobayashi, K. Koyama and J. Soda, Thick brane worlds and their stability, Phys. Rev. D 65 (2002) 064014 [hep-th/0107025] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. M. Toharia, Odd tachyons in compact extra dimensions, arXiv:0803.2503 [SPIRES].

  27. M. Toharia, M. Trodden and E.J. West, Scalar kinks in warped extra dimensions, Phys. Rev. D 82 (2010) 025009 [arXiv:1002.0011] [SPIRES].

    ADS  Google Scholar 

  28. O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. D.Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [SPIRES].

    ADS  Google Scholar 

  30. O. DeWolfe and D.Z. Freedman, Notes on fluctuations and correlation functions in holographic renormalization group flows, hep-th/0002226 [SPIRES].

  31. D. Bazeia, M.M. Ferreira, A.R. Gomes and R. Menezes, Lorentz-violating effects on topological defects generated by two real scalar fields, Physica D 239 (2010) 942 [arXiv:1001.5286] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept. 251 (1995) 267 [hep-th/9405029] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien P. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mert Aybat, S., George, D.P. Stability of scalar fields in warped extra dimensions. J. High Energ. Phys. 2010, 10 (2010). https://doi.org/10.1007/JHEP09(2010)010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)010

Keywords