Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Natural tuning: towards a proof of concept

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The cosmological constant problem and the absence of new natural physics at the electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-tuned or that a refined notion of naturalness is required. We construct a family of toy UV complete quantum theories providing a proof of concept for the second possibility. Low energy physics is described by a tuned effective field theory, which exhibits relevant interactions not protected by any symmetries and separated by an arbitrary large mass gap from the new “gravitational” physics, represented by a set of irrelevant operators. Nevertheless, the only available language to describe dynamics at all energy scales does not require any fine-tuning. The interesting novel feature of this construction is that UV physics is not described by a fixed point, but rather exhibits asymptotic fragility. Observation of additional unprotected scalars at the LHC would be a smoking gun for this scenario. Natural tuning also favors TeV scale unification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous symmetry breaking, lecture given at Cargese Summer Institute, August 26–September 8, Cargese, France (1979).

  2. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  3. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  6. V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The anthropic principle and the mass scale of the standard model, Phys. Rev. D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].

    ADS  Google Scholar 

  7. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

  9. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  10. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  11. W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995).

  12. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

    ADS  Google Scholar 

  14. J. Lykken, Higgs without supersymmetry, talk given at the MITP workshop: The First Three Years Of The LHC, March 18–22, Mainz, Germany (2013).

  15. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical naturalness and dynamical breaking of classical scale invariance, arXiv:1304.7006 [INSPIRE].

  16. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. S. Dubovsky, R. Flauger and V. Gorbenko, Effective string theory revisited, JHEP 09 (2012) 044 [arXiv:1203.1054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Dubovsky, R. Flauger and V. Gorbenko, Evidence for a new particle on the worldsheet of the QCD flux tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3 + 1 SU(N) gauge theories, JHEP 02 (2011) 030 [arXiv:1007.4720] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Seiberg, L. Susskind and N. Toumbas, Space-time noncommutativity and causality, JHEP 06 (2000) 044 [hep-th/0005015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M.J. Strassler, Nonsupersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [INSPIRE].

  25. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H.L. Verlinde and E.P. Verlinde, Scattering at Planckian energies, Nucl. Phys. B 371 (1992) 246 [hep-th/9110017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Dvali, A. Franca and C. Gomez, Road signs for UV-completion, arXiv:1204.6388 [INSPIRE].

  29. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].

    Article  ADS  Google Scholar 

  35. L. Mezincescu and P.K. Townsend, Anyons from strings, Phys. Rev. Lett. 105 (2010) 191601 [arXiv:1008.2334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl. Phys. B 358 (1991) 524 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Caselle, D. Fioravanti, F. Gliozzi and R. Tateo, Quantisation of the effective string with TBA, JHEP 07 (2013) 071 [arXiv:1305.1278] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. L. Castillejo, R. Dalitz and F. Dyson, Lows scattering equation for the charged and neutral scalar theories, Phys. Rev. 101 (1956) 453 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966).

    MATH  Google Scholar 

  41. P. Dorey, Exact S matrices, hep-th/9810026 [INSPIRE].

  42. D. Iagolnitzer, Factorization of the multiparticle S matrix in two-dimensional space-time models, Phys. Rev. D 18 (1978) 1275 [INSPIRE].

    ADS  Google Scholar 

  43. S. Dimopoulos and D.E. Kaplan, The Weak mixing angle from an SU(3) symmetry at a TeV, Phys. Lett. B 531 (2002) 127 [hep-ph/0201148] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Mirbabayi.

Additional information

ArXiv ePrint: 1305.6939

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubovsky, S., Gorbenko, V. & Mirbabayi, M. Natural tuning: towards a proof of concept. J. High Energ. Phys. 2013, 45 (2013). https://doi.org/10.1007/JHEP09(2013)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)045

Keywords