Abstract
We present the exact solution for the scattering problem in the flat space Jackiw-Teitelboim (JT) gravity coupled to an arbitrary quantum field theory. JT gravity results in a gravitational dressing of field theoretical scattering amplitudes. The exact expression for the dressed S-matrix was previously known as a solvable example of a novel UV asymptotic behavior, dubbed asymptotic fragility. This dressing is equivalent to the \( T\overline{T} \) deformation of the initial quantum field theory. JT gravity coupled to a single mass-less boson provides a promising action formulation for an integrable approximation to the worldsheet theory of confining strings in 3D gluodynamics. We also derive the dressed S-matrix as a flat space limit of the near AdS2 holography. We show that in order to preserve the flat space unitarity the conventional Schwarzian dressing of boundary correlators needs to be slightly extended. Finally, we propose a new simple expression for flat space amplitudes of massive particles in terms of correlators of holographic CFT’s.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].
S. Dubovsky, V. Gorbenko and M. Mirbabayi, Natural Tuning: Towards A Proof of Concept, JHEP 09 (2013) 045 [arXiv:1305.6939] [INSPIRE].
A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
A. Kitaev, A simple model of quantum holography, (2015) http://online.kitp.ucsb.edu/online/entangled15/kitaev/.
S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \) -deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
H.L. Verlinde and E.P. Verlinde, Scattering at Planckian energies, Nucl. Phys. B 371 (1992) 246 [hep-th/9110017] [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), arXiv:1611.03470 [INSPIRE].
A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
M. Caselle, D. Fioravanti, F. Gliozzi and R. Tateo, Quantisation of the effective string with TBA, JHEP 07 (2013) 071 [arXiv:1305.1278] [INSPIRE].
C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes, Phys. Rev. D 45 (1992) R1005 [hep-th/9111056] [INSPIRE].
S. Dubovsky and G. Hernandez-Chifflet, Yang-Mills Glueballs as Closed Bosonic Strings, JHEP 02 (2017) 022 [arXiv:1611.09796] [INSPIRE].
C. Itzykson and J.B. Zuber, Quantum Field Theory, International Series In Pure and Applied Physics, McGraw-Hill, New York (1980).
M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].
A.L. Fitzpatrick and J. Kaplan, Scattering States in AdS/CFT, arXiv:1104.2597 [INSPIRE].
M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix Bootstrap I: QFT in AdS, arXiv:1607.06109 [INSPIRE].
S.R. Coleman, Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].
S. Komatsu, to appear,
J. Polchinski, Evaluation of the One Loop String Path Integral, Commun. Math. Phys. 104 (1986) 37 [INSPIRE].
P. Fendley, H. Saleur and A.B. Zamolodchikov, Massless flows, 2. The Exact S matrix approach, Int. J. Mod. Phys. A 8 (1993) 5751 [hep-th/9304051] [INSPIRE].
E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
V. Pestun et al., Localization techniques in quantum field theories, arXiv:1608.02952 [INSPIRE].
D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, arXiv:1703.04612 [INSPIRE].
J.J. Duistermaat and G.J. Heckman, On the Variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259 [INSPIRE].
S. Dubovsky and V. Gorbenko, Towards a Theory of the QCD String, JHEP 02 (2016) 022 [arXiv:1511.01908] [INSPIRE].
S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from Lattice Data for a New Particle on the Worldsheet of the QCD Flux Tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].
S. Dubovsky, R. Flauger and V. Gorbenko, Flux Tube Spectra from Approximate Integrability at Low Energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].
A. Athenodorou, B. Bringoltz and M. Teper, Closed flux tubes and their string description in D = 3+1 SU(N) gauge theories, JHEP 02(2011) 030 [arXiv:1007.4720] [INSPIRE].
A. Athenodorou and M. Teper, SU(N) gauge theories in 2+1 dimensions: glueball spectra and k-string tensions, JHEP 02 (2017) 015 [arXiv:1609.03873] [INSPIRE].
A. Athenodorou and M. Teper, On the mass of the world-sheet ‘axion’ in SU(N ) gauge theories in 3 + 1 dimensions, Phys. Lett. B 771 (2017) 408 [arXiv:1702.03717] [INSPIRE].
H.L. Verlinde, Black holes and strings in two-dimensions, in Recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Proceedings, 6th Marcel Grossmann Meeting, Kyoto, Japan, June 23-29, 1991. Pts. A, B, pp. 178-207.
D. Cangemi and R. Jackiw, Gauge invariant formulations of lineal gravity, Phys. Rev. Lett. 69 (1992) 233 [hep-th/9203056] [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Quantization of Two-Dimensional Supergravity and Critical Dimensions for String Models, Phys. Lett. B 106 (1981) 63 [INSPIRE].
A.A. Tseytlin, Finite σ-models and exact string solutions with Minkowski signature metric, Phys. Rev. D 47 (1993) 3421 [hep-th/9211061] [INSPIRE].
D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161 [hep-th/9212149] [INSPIRE].
D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].
S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2-D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].
L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].
V.A. Rubakov, Baby universes and energy (non)conservation in (1 + 1)-dimensional dilaton gravity, Phys. Rev. D 56 (1997) 3523 [hep-th/9611171] [INSPIRE].
J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
M. Fitkevich, D. Levkov and Y. Zenkevich, Exact solutions and critical chaos in dilaton gravity with a boundary, JHEP 04 (2017) 108 [arXiv:1702.02576] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1706.06604
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Dubovsky, S., Gorbenko, V. & Mirbabayi, M. Asymptotic fragility, near AdS2 holography and \( T\overline{T} \) . J. High Energ. Phys. 2017, 136 (2017). https://doi.org/10.1007/JHEP09(2017)136
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2017)136