Abstract
The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEνNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assuming light vector mediators, we study the effects of CP violation on the CEνNS process in the COHERENT sodium-iodine, liquid argon and germanium detectors. We identify a region in parameter space for which the event rate always involves a dip and another one for which this is never the case. We show that the presence of a dip in the event rate spectrum can be used to constraint CP violating effects, in such a way that the larger the detector volume the tighter the constraints. Furthermore, it allows the reconstruction of the effective coupling responsible for the signal with an uncertainty determined by recoil energy resolution. In the region where no dip is present, we find that CP violating parameters can mimic the Standard Model CEνNS prediction or spectra induced by real parameters. We point out that the interpretation of CEνNS data in terms of a light vector mediator should take into account possible CP violating effects. Finally, we stress that our results are qualitatively applicable for CEνNS induced by solar or reactor neutrinos. Thus, the CP violating effects discussed here and their consequences should be taken into account as well in the analysis of data from multi-ton dark matter detectors or experiments such as CONUS, ν-cleus or CONNIE.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
COHERENT collaboration, Observation of coherent elastic neutrino-nucleus scattering, Science357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
J. Hackenmüller et al., The CONUS experiment, talk given at the XV International Conference on Topics in Astroparticle and Underground Physics , July 24-28, Sudbury, Canada (2017).
CONNIE collaboration, The CONNIE experiment, J. Phys. Conf. Ser.761 (2016) 012057 [arXiv:1608.01565] [INSPIRE].
R. Strauss et al., The ν-cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering, Eur. Phys. J.C 77 (2017) 506 [arXiv:1704.04320] [INSPIRE].
XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment, arXiv:1802.06039 [INSPIRE].
DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
B. Dutta and L.E. Strigari, Neutrino physics with dark matter detectors, arXiv:1901.08876 [INSPIRE].
R. Harnik, J. Kopp and P.A.N. Machado, Exploring ν signals in dark matter detectors, JCAP07 (2012) 026 [arXiv:1202.6073] [INSPIRE].
D.G. Cerdeño et al., Physics from solar neutrinos in dark matter direct detection experiments, JHEP05 (2016) 118 [Erratum ibid.09 (2016) 048] [arXiv:1604.01025] [INSPIRE].
I.M. Shoemaker, COHERENT search strategy for beyond standard model neutrino interactions, Phys. Rev.D 95 (2017) 115028 [arXiv:1703.05774] [INSPIRE].
B. Dutta, S. Liao, L.E. Strigari and J.W. Walker, Non-standard interactions of solar neutrinos in dark matter experiments, Phys. Lett.B 773 (2017) 242 [arXiv:1705.00661] [INSPIRE].
D. Aristizabal Sierra, N. Rojas and M.H.G. Tytgat, Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors, JHEP03 (2018) 197 [arXiv:1712.09667] [INSPIRE].
M.C. Gonzalez-Garcia, M. Maltoni, Y.F. Perez-Gonzalez and R. Zukanovich Funchal, Neutrino Discovery Limit of Dark Matter Direct Detection Experiments in the Presence of Non-Standard Interactions, JHEP07 (2018) 019 [arXiv:1803.03650] [INSPIRE].
J. Billard, J. Johnston and B.J. Kavanagh, Prospects for exploring new physics in coherent elastic neutrino-nucleus scattering, JCAP11 (2018) 016 [arXiv:1805.01798] [INSPIRE].
D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev.D 9 (1974) 1389 [INSPIRE].
D.Z. Freedman, D.N. Schramm and D.L. Tubbs, The weak neutral current and its effects in stellar collapse, Ann. Rev. Nucl. Part. Sci.27 (1977) 167 [INSPIRE].
V.A. Bednyakov and D.V. Naumov, Coherency and incoherency in neutrino-nucleus elastic and inelastic scattering, Phys. Rev.D 98 (2018) 053004 [arXiv:1806.08768] [INSPIRE].
D. Aristizabal Sierra, J. Liao and D. Marfatia, Impact of form factor uncertainties on interpretations of coherent elastic neutrino-nucleus scattering data, JHEP06 (2019) 141 [arXiv:1902.07398] [INSPIRE].
COHERENT collaboration, COHERENT collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering, arXiv:1804.09459 [INSPIRE].
P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT enlightenment of the neutrino dark side, Phys. Rev.D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett.B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
O.G. Miranda, G. Sanchez Garcia and O. Sanders, Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case, Adv. High Energy Phys.2019 (2019) 3902819 [arXiv:1902.09036] [INSPIRE].
Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP05 (2018) 066 [arXiv:1802.05171] [INSPIRE].
D.K. Papoulias and T.S. Kosmas, COHERENT constraints to conventional and exotic neutrino physics, Phys. Rev.D 97 (2018) 033003 [arXiv:1711.09773] [INSPIRE].
O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP07 (2019) 103 [arXiv:1905.03750] [INSPIRE].
D. Aristizabal Sierra, V. De Romeri and N. Rojas, COHERENT analysis of neutrino generalized interactions, Phys. Rev.D 98 (2018) 075018 [arXiv:1806.07424] [INSPIRE].
J.B. Dent et al., Probing light mediators at ultralow threshold energies with coherent elastic neutrino-nucleus scattering, Phys. Rev.D 96 (2017) 095007 [arXiv:1612.06350] [INSPIRE].
K. Scholberg, Observation of coherent elestic neutrino-nucleus scattering, COFI seminar , September 12, Duke University, U.S.A. (2017).
Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Phys. Lett.B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].
Y. Farzan and I.M. Shoemaker, Lepton flavor violating non-standard interactions via light mediators, JHEP07 (2016) 033 [arXiv:1512.09147] [INSPIRE].
Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev.D 94 (2016) 053010 [arXiv:1607.07616] [INSPIRE].
M.B. Wise and Y. Zhang, Effective theory and simple completions for neutrino interactions, Phys. Rev.D 90 (2014) 053005 [arXiv:1404.4663] [INSPIRE].
A.G. Beda et al., Gemma experiment: the results of neutrino magnetic moment search, Phys. Part. Nucl. Lett.10 (2013) 139.
P. Bakhti and Y. Farzan, Constraining secret gauge interactions of neutrinos by meson decays, Phys. Rev.D 95 (2017) 095008 [arXiv:1702.04187] [INSPIRE].
P.B. Denton, Y. Farzan and I.M. Shoemaker, Testing large non-standard neutrino interactions with arbitrary mediator mass after COHERENT data, JHEP07 (2018) 037 [arXiv:1804.03660] [INSPIRE].
P. Bakhti, Y. Farzan and M. Rajaee, Secret interactions of neutrinos with light gauge boson at the DUNE near detector, Phys. Rev.D 99 (2019) 055019 [arXiv:1810.04441] [INSPIRE].
CMS collaboration, Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, JHEP04 (2015) 025 [arXiv:1412.6302] [INSPIRE].
ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1of proton-proton collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].
I. Angeli and K.P. Marinova, Table of experimental nuclear ground state charge radii: an update, Atom. Data Nucl. Data Tabl.99 (2013) 69.
M. Centelles, X. Roca-Maza, X. Vinas and M. Warda, Nuclear symmetry energy probed by neutron skin thickness of nuclei, Phys. Rev. Lett.102 (2009) 122502 [arXiv:0806.2886] [INSPIRE].
R.H. Helm, Inelastic and elastic scattering of 187-MeV electrons from selected even-even nuclei, Phys. Rev.104 (1956) 1466 [INSPIRE].
M. Bauer, P. Foldenauer and J. Jaeckel, Hunting all the hidden photons, JHEP07 (2018) 094 [arXiv:1803.05466] [INSPIRE].
KLOE-2 collaboration, Limit on the production of a new vector boson in e +e − → U γ, U →π +π −with the KLOE experiment, Phys. Lett.B 757 (2016) 356 [arXiv:1603.06086] [INSPIRE].
BaBar collaboration, Search for a dark photon in e +e −collisions at BaBar, Phys. Rev. Lett.113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
G. Inguglia, Belle II studies of missing energy decays and searches for dark photon production, PoS(DIS2016)263 [arXiv:1607.02089] [INSPIRE].
SINDRUM collaboration, Search for the decay μ + → e +e +e −, Nucl. Phys.B 260 (1985) 1 [INSPIRE].
CLEO collaboration, Tau decays into three charged leptons and two neutrinos, Phys. Rev. Lett.76 (1996) 2637 [INSPIRE].
LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett.120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP02 (2015) 157 [arXiv:1412.0018] [INSPIRE].
W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino trident production: a powerful probe of new physics with neutrino beams, Phys. Rev. Lett.113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
S. Bilmis et al., Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev.D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].
J.I. Collar, A.R.L. Kavner and C.M. Lewis, Response of CsI[Na] to nuclear recoils: impact on coherent elastic neutrino-nucleus scattering (CEνNS), Phys. Rev.D 100 (2019) 033003 [arXiv:1907.04828] [INSPIRE].
D.K. Papoulias, COHERENT constraints after the Chicago-3 quenching factor measurement, arXiv:1907.11644 [INSPIRE].
A.N. Khan and W. Rodejohann, New physics from COHERENT data with improved quenching factors, arXiv:1907.12444 [INSPIRE].
J.A. Grifols and E. Masso, Constraints on finite range baryonic and leptonic forces from stellar evolution, Phys. Lett.B 173 (1986) 237 [INSPIRE].
J.A. Grifols, E. Masso and S. Peris, Energy loss from the Sun and red giants: bounds on short range baryonic and leptonic forces, Mod. Phys. Lett.A 4 (1989) 311 [INSPIRE].
J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion and an axion-like particle, JHEP09 (2018) 051 [arXiv:1803.00993] [INSPIRE].
J.H. Chang, R. Essig and S.D. McDermott, Revisiting supernova 1987A constraints on dark photons, JHEP01 (2017) 107 [arXiv:1611.03864] [INSPIRE].
B. Müller, The status of multi-dimensional core-collapse supernova models, Publ. Astron. Soc. Austral.33 (2016) e048 [arXiv:1608.03274] [INSPIRE].
E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP02 (2017) 033 [arXiv:1611.05852] [INSPIRE].
A.E. Nelson and J. Walsh, Short baseline neutrino oscillations and a new light gauge boson, Phys. Rev.D 77 (2008) 033001 [arXiv:0711.1363] [INSPIRE].
A.E. Nelson and J. Walsh, Chameleon vector bosons, Phys. Rev.D 77 (2008) 095006 [arXiv:0802.0762] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1906.01156
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Aristizabal Sierra, D., De Romeri, V. & Rojas, N. CP violating effects in coherent elastic neutrino-nucleus scattering processes. J. High Energ. Phys. 2019, 69 (2019). https://doi.org/10.1007/JHEP09(2019)069
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2019)069