Abstract
We explore the possibility of having a fermionic dark matter candidate within U(1)′ models for CEνNS experiments in light of the latest COHERENT data and the current and future dark matter direct detection experiments. A vector-like fermionic dark matter has been introduced which is charged under U(1)′ symmetry, naturally stable after spontaneous symmetry breaking. We perform a complementary investigation using CEνNS experiments and dark matter direct detection searches to explore dark matter as well as Z′ boson parameter space. Depending on numerous other constraints arising from the beam dump, LHCb, BABAR, and the forthcoming reactor experiment proposed by the SBC collaboration, we explore the allowed region of Z′ portal dark matter.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
COHERENT collaboration, First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon, Phys. Rev. Lett. 126 (2021) 012002 [arXiv:2003.10630] [INSPIRE].
COHERENT collaboration, COHERENT Collaboration data release from the first detection of coherent elastic neutrino-nucleus scattering on argon, arXiv:2006.12659 [INSPIRE].
K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev. D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].
M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097 [arXiv:1612.04150] [INSPIRE].
B. Sevda et al., Constraints on nonstandard intermediate boson exchange models from neutrino-electron scattering, Phys. Rev. D 96 (2017) 035017 [arXiv:1702.02353] [INSPIRE].
O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP 07 (2019) 103 [arXiv:1905.03750] [INSPIRE].
M. Cadeddu, C. Giunti, Y.F. Li and Y.Y. Zhang, Average CsI neutron density distribution from COHERENT data, Phys. Rev. Lett. 120 (2018) 072501 [arXiv:1710.02730] [INSPIRE].
D.K. Papoulias, T.S. Kosmas, R. Sahu, V.K.B. Kota and M. Hota, Constraining nuclear physics parameters with current and future COHERENT data, Phys. Lett. B 800 (2020) 135133 [arXiv:1903.03722] [INSPIRE].
B.C. Canas, E.A. Garces, O.G. Miranda, A. Parada and G. Sanchez Garcia, Interplay between nonstandard and nuclear constraints in coherent elastic neutrino-nucleus scattering experiments, Phys. Rev. D 101 (2020) 035012 [arXiv:1911.09831] [INSPIRE].
M. Cadeddu, F. Dordei, C. Giunti, Y.F. Li, E. Picciau and Y.Y. Zhang, Physics results from the first COHERENT observation of coherent elastic neutrino-nucleus scattering in argon and their combination with cesium-iodide data, Phys. Rev. D 102 (2020) 015030 [arXiv:2005.01645] [INSPIRE].
M. Cadeddu, C. Giunti, K.A. Kouzakov, Y.F. Li, A.I. Studenikin and Y.Y. Zhang, Neutrino Charge Radii from COHERENT Elastic Neutrino-Nucleus Scattering, Phys. Rev. D 98 (2018) 113010 [Erratum ibid. 101 (2020) 059902] [arXiv:1810.05606] [INSPIRE].
O.G. Miranda, G. Sanchez Garcia and O. Sanders, Coherent elastic neutrino-nucleus scattering as a precision test for the Standard Model and beyond: the COHERENT proposal case, Adv. High Energy Phys. 2019 (2019) 3902819 [arXiv:1902.09036] [INSPIRE].
C. Blanco, D. Hooper and P. Machado, Constraining Sterile Neutrino Interpretations of the LSND and MiniBooNE Anomalies with Coherent Neutrino Scattering Experiments, Phys. Rev. D 101 (2020) 075051 [arXiv:1901.08094] [INSPIRE].
J.M. Berryman, Constraining Sterile Neutrino Cosmology with Terrestrial Oscillation Experiments, Phys. Rev. D 100 (2019) 023540 [arXiv:1905.03254] [INSPIRE].
O.G. Miranda, D.K. Papoulias, O. Sanders, M. Tórtola and J.W.F. Valle, Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos, Phys. Rev. D 102 (2020) 113014 [arXiv:2008.02759] [INSPIRE].
J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
C. Giunti, General COHERENT constraints on neutrino nonstandard interactions, Phys. Rev. D 101 (2020) 035039 [arXiv:1909.00466] [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, On the Determination of Leptonic CP-violation and Neutrino Mass Ordering in Presence of Non-Standard Interactions: Present Status, JHEP 06 (2019) 055 [arXiv:1905.05203] [INSPIRE].
P. Coloma, I. Esteban, M.C. Gonzalez-Garcia and M. Maltoni, Improved global fit to Non-Standard neutrino Interactions using COHERENT energy and timing data, JHEP 02 (2020) 023 [Addendum ibid. 12 (2020) 071] [arXiv:1911.09109] [INSPIRE].
A.N. Khan and W. Rodejohann, New physics from COHERENT data with an improved quenching factor, Phys. Rev. D 100 (2019) 113003 [arXiv:1907.12444] [INSPIRE].
L.J. Flores, N. Nath and E. Peinado, Non-standard neutrino interactions in U(1)’ model after COHERENT data, JHEP 06 (2020) 045 [arXiv:2002.12342] [INSPIRE].
P. Coloma, M.C. Gonzalez-Garcia and M. Maltoni, Neutrino oscillation constraints on U(1)’ models: from non-standard interactions to long-range forces, JHEP 01 (2021) 114 [arXiv:2009.14220] [INSPIRE].
XENON collaboration, Search for Coherent Elastic Scattering of Solar 8B Neutrinos in the XENON1T Dark Matter Experiment, Phys. Rev. Lett. 126 (2021) 091301 [arXiv:2012.02846] [INSPIRE].
PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
J.-H. Huh, J.E. Kim, J.-C. Park and S.C. Park, Galactic 511 keV line from MeV milli-charged dark matter, Phys. Rev. D 77 (2008) 123503 [arXiv:0711.3528] [INSPIRE].
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
D. Hooper and K.M. Zurek, A Natural Supersymmetric Model with MeV Dark Matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].
C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic Mixing as the Origin of Light Dark Scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].
R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species, arXiv:1004.0691 [INSPIRE].
R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in Community Summer Study 2013: Snowmass on the Mississippi, (2013) [arXiv:1311.0029] [INSPIRE].
B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic Dark Matter at Neutrino Factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].
COHERENT collaboration, Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter, Phys. Rev. D 102 (2020) 052007 [arXiv:1911.06422] [INSPIRE].
M. Cvetič and P. Langacker, Z’ Physics and Supersymmetry, Adv. Ser. Direct. High Energy Phys. 18 (1998) 312 [hep-ph/9707451] [INSPIRE].
E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [INSPIRE].
M. Frank, Evading Z′ boson mass limits in U(1)′ supersymmetric models, Eur. Phys. J. ST 229 (2020) 3205 [INSPIRE].
D. London and J.L. Rosner, Extra Gauge Bosons in E6, Phys. Rev. D 34 (1986) 1530 [INSPIRE].
J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].
G. Arcadi, M. Lindner, Y. Mambrini, M. Pierre and F.S. Queiroz, GUT Models at Current and Future Hadron Colliders and Implications to Dark Matter Searches, Phys. Lett. B 771 (2017) 508 [arXiv:1704.02328] [INSPIRE].
M. Cvetič and P. Langacker, Implications of Abelian extended gauge structures from string models, Phys. Rev. D 54 (1996) 3570 [hep-ph/9511378] [INSPIRE].
G. Cleaver, M. Cvetič, J.R. Espinosa, L.L. Everett, P. Langacker and J. Wang, Physics implications of flat directions in free fermionic superstring models 1. Mass spectrum and couplings, Phys. Rev. D 59 (1999) 055005 [hep-ph/9807479] [INSPIRE].
SBC collaboration, The Scintillating Bubble Chamber (SBC) Experiment for Dark Matter and Reactor CEvNS, PoS ICHEP2020 (2021) 632 [INSPIRE].
SBC and CEνNS Theory Group at IF-UNAM collaborations, Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic neutrino-nucleus scattering reactor experiments, Phys. Rev. D 103 (2021) L091301 [arXiv:2101.08785] [INSPIRE].
A. Drukier and L. Stodolsky, Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy, Phys. Rev. D 30 (1984) 2295 [INSPIRE].
J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].
K. Patton, J. Engel, G.C. McLaughlin and N. Schunck, Neutrino-nucleus coherent scattering as a probe of neutron density distributions, Phys. Rev. C 86 (2012) 024612 [arXiv:1207.0693] [INSPIRE].
O.G. Miranda, D.K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola and J.W.F. Valle, Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon, JHEP 05 (2020) 130 [Erratum ibid. 01 (2021) 067] [arXiv:2003.12050] [INSPIRE].
M. Cadeddu et al., Constraints on light vector mediators through coherent elastic neutrino nucleus scattering data from COHERENT, JHEP 01 (2021) 116 [arXiv:2008.05022] [INSPIRE].
P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].
J. Heeck, M. Lindner, W. Rodejohann and S. Vogl, Non-Standard Neutrino Interactions and Neutral Gauge Bosons, SciPost Phys. 6 (2019) 038 [arXiv:1812.04067] [INSPIRE].
T. Han, J. Liao, H. Liu and D. Marfatia, Nonstandard neutrino interactions at COHERENT, DUNE, T2HK and LHC, JHEP 11 (2019) 028 [arXiv:1910.03272] [INSPIRE].
M. Bauer, P. Foldenauer and M. Mosny, Flavor structure of anomaly-free hidden photon models, Phys. Rev. D 103 (2021) 075024 [arXiv:2011.12973] [INSPIRE].
L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].
C. Bonilla, S. Centelles-Chuliá, R. Cepedello, E. Peinado and R. Srivastava, Dark matter stability and Dirac neutrinos using only Standard Model symmetries, Phys. Rev. D 101 (2020) 033011 [arXiv:1812.01599] [INSPIRE].
R. Srivastava, C. Bonilla and E. Peinado, The role of residual symmetries in dark matter stability and the neutrino nature, LHEP 2 (2019) 124 [arXiv:1903.01477] [INSPIRE].
N. Okada and S. Okada, \( {Z}_{BL}^{\prime } \) portal dark matter and LHC Run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].
M. Escudero, S.J. Witte and N. Rius, The dispirited case of gauged U(1)B−L dark matter, JHEP 08 (2018) 190 [arXiv:1806.02823] [INSPIRE].
S. Okada, Z′ Portal Dark Matter in the Minimal B − L Model, Adv. High Energy Phys. 2018 (2018) 5340935 [arXiv:1803.06793] [INSPIRE].
C. Han, M.L. López-Ibáñez, B. Peng and J.M. Yang, Dirac dark matter in U(1)B−L with the Stueckelberg mechanism, Nucl. Phys. B 959 (2020) 115154 [arXiv:2001.04078] [INSPIRE].
D. Borah, S. Jyoti Das and A.K. Saha, Cosmic inflation in minimal U(1)B−L model: implications for (non) thermal dark matter and leptogenesis, Eur. Phys. J. C 81 (2021) 169 [arXiv:2005.11328] [INSPIRE].
K. Kaneta, Z. Kang and H.-S. Lee, Right-handed neutrino dark matter under the B − L gauge interaction, JHEP 02 (2017) 031 [arXiv:1606.09317] [INSPIRE].
A. Alves, G. Arcadi, Y. Mambrini, S. Profumo and F.S. Queiroz, Augury of darkness: the low-mass dark Z′ portal, JHEP 04 (2017) 164 [arXiv:1612.07282] [INSPIRE].
D. Borah, D. Nanda, N. Narendra and N. Sahu, Right-handed neutrino dark matter with radiative neutrino mass in gauged B − L model, Nucl. Phys. B 950 (2020) 114841 [arXiv:1810.12920] [INSPIRE].
A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [arXiv:0805.0555] [INSPIRE].
G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark Matter Complementarity and the Z′ Portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].
A. Kamada and H.-B. Yu, Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube, Phys. Rev. D 92 (2015) 113004 [arXiv:1504.00711] [INSPIRE].
CHARM collaboration, Search for Axion Like Particle Production in 400 GeV Proton - Copper Interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].
J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].
E.M. Riordan et al., A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].
A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].
A. Konaka et al., Search for Neutral Particles in Electron Beam Dump Experiment, Phys. Rev. Lett. 57 (1986) 659 [INSPIRE].
J. Blümlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys. C 51 (1991) 341 [INSPIRE].
NA64 collaboration, Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs, Phys. Rev. D 101 (2020) 071101 [arXiv:1912.11389] [INSPIRE].
NOMAD collaboration, Search for heavy neutrinos mixing with tau neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].
M. Davier and H. Nguyen Ngoc, An Unambiguous Search for a Light Higgs Boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].
G. Bernardi et al., Search for Neutrino Decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].
J. Blümlein and J. Brunner, New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
BaBar collaboration, Search for a Dark Photon in e+e− Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
LHCb collaboration, Search for A′ → μ+μ− Decays, Phys. Rev. Lett. 124 (2020) 041801 [arXiv:1910.06926] [INSPIRE].
F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].
P. Ilten, Y. Soreq, M. Williams and W. Xue, Serendipity in dark photon searches, JHEP 06 (2018) 004 [arXiv:1801.04847] [INSPIRE].
BaBar collaboration, Search for a muonic dark force at BABAR, Phys. Rev. D 94 (2016) 011102 [arXiv:1606.03501] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2107.04037
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
de la Vega, L.M.G., Flores, L.J., Nath, N. et al. Complementarity between dark matter direct searches and CEνNS experiments in U(1)′ models. J. High Energ. Phys. 2021, 146 (2021). https://doi.org/10.1007/JHEP09(2021)146
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2021)146