Abstract
It is well-known that all Feynman integrals within a given family can be expressed as a finite linear combination of master integrals. The master integrals naturally group into sectors. Starting from two loops, there can exist sectors made up of more than one master integral. In this paper we show that such sectors may have additional symmetries. First of all, self-duality, which was first observed in Feynman integrals related to Calabi-Yau geometries, often carries over to non-Calabi-Yau Feynman integrals. Secondly, we show that in addition there can exist Galois symmetries relating integrals. In the simplest case of two master integrals within a sector, whose definition involves a square root r, we may choose a basis (I1, I2) such that I2 is obtained from I1 by the substitution r → −r. This pattern also persists in sectors, which a priori are not related to any square root with dependence on the kinematic variables. We show in several examples that in such cases a suitable redefinition of the integrals introduces constant square roots like \( \sqrt{3} \). The new master integrals are then again related by a Galois symmetry, for example the substitution \( \sqrt{3} \) → \( -\sqrt{3} \). To handle the case where the argument of a square root would be a perfect square we introduce a limit Galois symmetry. Both self-duality and Galois symmetries constrain the differential equation.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].
K.G. Chetyrkin and F.V. Tkachov, Integration by parts: The algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
A.V. Smirnov and A.V. Petukhov, The Number of Master Integrals is Finite, Lett. Math. Phys. 97 (2011) 37 [arXiv:1004.4199] [INSPIRE].
A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
A.V. Kotikov, Differential equation method: The calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. 295 (1992) 409] [INSPIRE].
E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].
S. Pögel, X. Wang and S. Weinzierl, Taming Calabi-Yau Feynman Integrals: The Four-Loop Equal-Mass Banana Integral, Phys. Rev. Lett. 130 (2023) 101601 [arXiv:2211.04292] [INSPIRE].
S. Pögel, X. Wang and S. Weinzierl, Bananas of equal mass: any loop, any order in the dimensional regularisation parameter, JHEP 04 (2023) 117 [arXiv:2212.08908] [INSPIRE].
X. Jiang, X. Wang, L.L. Yang and J. Zhao, ε-factorized differential equations for two-loop non-planar triangle Feynman integrals with elliptic curves, JHEP 09 (2023) 187 [arXiv:2305.13951] [INSPIRE].
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].
D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP 05 (2018) 164 [arXiv:1712.09610] [INSPIRE].
F. Febres Cordero et al., Two-loop master integrals for leading-color pp → \( t\overline{t}H \) amplitudes with a light-quark loop, JHEP 07 (2024) 084 [arXiv:2312.08131] [INSPIRE].
H. Frellesvig and S. Weinzierl, On ε-factorised bases and pure Feynman integrals, SciPost Phys. 16 (2024) 150 [arXiv:2301.02264] [INSPIRE].
S. Pögel, X. Wang and S. Weinzierl, The three-loop equal-mass banana integral in ε-factorised form with meromorphic modular forms, JHEP 09 (2022) 062 [arXiv:2207.12893] [INSPIRE].
M. Bogner, Algebraic characterization of differential operators of Calabi-Yau type, arXiv:1304.5434 [INSPIRE].
M. Besier, D. Van Straten and S. Weinzierl, Rationalizing roots: an algorithmic approach, Commun. Num. Theor. Phys. 13 (2019) 253 [arXiv:1809.10983] [INSPIRE].
M. Besier, P. Wasser and S. Weinzierl, RationalizeRoots: Software Package for the Rationalization of Square Roots, Comput. Phys. Commun. 253 (2020) 107197 [arXiv:1910.13251] [INSPIRE].
M. Besier, D. Festi, M. Harrison and B. Naskręcki, Arithmetic and geometry of a K3 surface emerging from virtual corrections to Drell-Yan scattering, Commun. Num. Theor. Phys. 14 (2020) 863 [arXiv:1908.01079] [INSPIRE].
M. Heller, A. von Manteuffel and R.M. Schabinger, Multiple polylogarithms with algebraic arguments and the two-loop EW-QCD Drell-Yan master integrals, Phys. Rev. D 102 (2020) 016025 [arXiv:1907.00491] [INSPIRE].
N. Böttcher, N. Schwanemann and S. Weinzierl, Box integrals with fermion bubbles for low-energy measurements of the weak mixing angle, Eur. Phys. J. C 84 (2024) 495 [arXiv:2312.06773] [INSPIRE].
E. Chaubey and S. Weinzierl, Two-loop master integrals for the mixed QCD-electroweak corrections for H → \( b\overline{b} \) through a \( Ht\overline{t} \)-coupling, JHEP 05 (2019) 185 [arXiv:1904.00382] [INSPIRE].
E. Chaubey, I. Hönemann and S. Weinzierl, Three-loop master integrals for the Higgs boson self-energy with internal top-quarks and W-bosons, JHEP 11 (2022) 051 [arXiv:2208.05837] [INSPIRE].
V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].
J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].
S. Weinzierl, Feynman Integrals. A Comprehensive Treatment for Students and Researchers, Springer (2022) [https://doi.org/10.1007/978-3-030-99558-4] [INSPIRE].
T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].
A. von Manteuffel and R.M. Schabinger, Numerical Multi-Loop Calculations via Finite Integrals and One-Mass EW-QCD Drell-Yan Master Integrals, JHEP 04 (2017) 129 [arXiv:1701.06583] [INSPIRE].
R. Bonciani, S. Di Vita, P. Mastrolia and U. Schubert, Two-Loop Master Integrals for the mixed EW-QCD virtual corrections to Drell-Yan scattering, JHEP 09 (2016) 091 [arXiv:1604.08581] [INSPIRE].
S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].
M. Becchetti and R. Bonciani, Two-Loop Master Integrals for the Planar QCD Massive Corrections to Di-photon and Di-jet Hadro-production, JHEP 01 (2018) 048 [arXiv:1712.02537] [INSPIRE].
L. Adams and S. Weinzierl, The ε-form of the differential equations for Feynman integrals in the elliptic case, Phys. Lett. B 781 (2018) 270 [arXiv:1802.05020] [INSPIRE].
C. Bogner, S. Müller-Stach and S. Weinzierl, The unequal mass sunrise integral expressed through iterated integrals on \( {\mathcal{M}}_{1,3} \), Nucl. Phys. B 954 (2020) 114991 [arXiv:1907.01251] [INSPIRE].
C. Duhr, F. Porkert, C. Semper and S.F. Stawinski, Self-duality from twisted cohomology, arXiv:2408.04904 [INSPIRE].
Acknowledgments
K.W. is very grateful for the hospitality provided by the Institut für Physik, Mainz. K.W. is supported by the Helmholtz-OCPC International Postdoctoral Exchange Fellowship Program. This work has been supported by the Cluster of Excellence Precision Physics, Fundamental Interactions, and Structure of Matter (Grant No. EXC-2118-390831469) and by the Cluster of Excellence ORIGINS (Grant No. EXC-2094-390783311), both funded by the German Research Foundation (DFG) within the German Excellence Strategy.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2407.08799
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Pögel, S., Wang, X., Weinzierl, S. et al. Self-dualities and Galois symmetries in Feynman integrals. J. High Energ. Phys. 2024, 84 (2024). https://doi.org/10.1007/JHEP09(2024)084
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2024)084