Abstract
Oscillons are long-lived, localized excitations of nonlinear scalar fields which may be copiously produced during preheating after inflation, leading to a possible oscillon dominated phase in the early Universe. For example, this can happen after axion monodromy inflation, on which we run our simulations. We investigate the stochastic gravitational wave background associated with an oscillon-dominated phase. An isolated oscillon is spherically symmetric and does not radiate gravitational waves, and we show that the flux of gravitational radiation generated between oscillons is also small. However, a significant stochastic gravitational wave background may be generated during preheating itself (i.e, when oscillons are forming), and in this case the characteristic size of the oscillons is imprinted on the gravitational wave power spectrum, which has multiple, distinct peaks.
Similar content being viewed by others
References
J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].
A. Dolgov and D. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [Yad. Fiz. 51 (1990) 273] [INSPIRE].
Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].
S.Y. Khlebnikov and I. Tkachev, Classical decay of inflaton, Phys. Rev. Lett. 77 (1996) 219 [hep-ph/9603378] [INSPIRE].
L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
G.N. Felder et al., Dynamics of symmetry breaking and tachyonic preheating, Phys. Rev. Lett. 87 (2001) 011601 [hep-ph/0012142] [INSPIRE].
M.A. Amin, R. Easther, H. Finkel, R. Flauger and M.P. Hertzberg, Oscillons after inflation, Phys. Rev. Lett. 108 (2012) 241302 [arXiv:1106.3335] [INSPIRE].
M.A. Amin, R. Easther and H. Finkel, Inflaton fragmentation and oscillon formation in three dimensions, JCAP 12 (2010) 001 [arXiv:1009.2505] [INSPIRE].
J. McDonald, Inflaton condensate fragmentation in hybrid inflation models, Phys. Rev. D 66 (2002) 043525 [hep-ph/0105235] [INSPIRE].
M. Broadhead and J. McDonald, Simulations of the end of supersymmetric hybrid inflation and non-topological soliton formation, Phys. Rev. D 72 (2005) 043519 [hep-ph/0503081] [INSPIRE].
I. Tkachev, S. Khlebnikov, L. Kofman and A.D. Linde, Cosmic strings from preheating, Phys. Lett. B 440 (1998) 262 [hep-ph/9805209] [INSPIRE].
S. Kasuya and M. Kawasaki, Q ball formation in the gravity mediated SUSY breaking scenario, Phys. Rev. D 62 (2000) 023512 [hep-ph/0002285] [INSPIRE].
A. Kusenko, A. Mazumdar and T. Multamaki, Gravitational waves from the fragmentation of a supersymmetric condensate, Phys. Rev. D 79 (2009) 124034 [arXiv:0902.2197] [INSPIRE].
I. Bogolyubsky and V. Makhankov, Lifetime of pulsating solitons in some classical models, Pisma Zh. Eksp. Teor. Fiz. 24 (1976) 15 [INSPIRE].
M. Gleiser, Pseudostable bubbles, Phys. Rev. D 49 (1994) 2978 [hep-ph/9308279] [INSPIRE].
E.J. Copeland, M. Gleiser and H.-R. Muller, Oscillons: resonant configurations during bubble collapse, Phys. Rev. D 52 (1995) 1920 [hep-ph/9503217] [INSPIRE].
I. Dymnikova, L. Koziel, M. Khlopov and S. Rubin, Quasilumps from first order phase transitions, Grav. Cosmol. 6 (2000) 311 [hep-th/0010120] [INSPIRE].
E.P. Honda and M.W. Choptuik, Fine structure of oscillons in the spherically symmetric ϕ 4 Klein-Gordon model, Phys. Rev. D 65 (2002) 084037 [hep-ph/0110065] [INSPIRE].
E.J. Copeland, S. Pascoli and A. Rajantie, Dynamics of tachyonic preheating after hybrid inflation, Phys. Rev. D 65 (2002) 103517 [hep-ph/0202031] [INSPIRE].
E. Farhi, N. Graham, V. Khemani, R. Markov and R. Rosales, An oscillon in the SU(2) gauged Higgs model, Phys. Rev. D 72 (2005) 101701 [hep-th/0505273] [INSPIRE].
M. Gleiser, Oscillons in scalar field theories: applications in higher dimensions and inflation, Int. J. Mod. Phys. D 16 (2007) 219 [hep-th/0602187] [INSPIRE].
N. Graham and N. Stamatopoulos, Unnatural oscillon lifetimes in an expanding background, Phys. Lett. B 639 (2006) 541 [hep-th/0604134] [INSPIRE].
M. Hindmarsh and P. Salmi, Numerical investigations of oscillons in 2 dimensions, Phys. Rev. D 74 (2006) 105005 [hep-th/0606016] [INSPIRE].
G. Fodor, P. Forgacs, P. Grandclement and I. Racz, Oscillons and quasi-breathers in the ϕ 4 Klein-Gordon model, Phys. Rev. D 74 (2006) 124003 [hep-th/0609023] [INSPIRE].
P.M. Saffin and A. Tranberg, Oscillons and quasi-breathers in D + 1 dimensions, JHEP 01 (2007) 030 [hep-th/0610191] [INSPIRE].
N. Graham, An electroweak oscillon, Phys. Rev. Lett. 98 (2007) 101801 [Erratum ibid. 98 (2007) 189904] [hep-th/0610267] [INSPIRE].
E. Farhi et al., Emergence of oscillons in an expanding background, Phys. Rev. D 77 (2008) 085019 [arXiv:0712.3034] [INSPIRE].
M. Hindmarsh and P. Salmi, Oscillons and domain walls, Phys. Rev. D 77 (2008) 105025 [arXiv:0712.0614] [INSPIRE].
G. Fodor, P. Forgacs, Z. Horvath and A. Lukacs, Small amplitude quasi-breathers and oscillons, Phys. Rev. D 78 (2008) 025003 [arXiv:0802.3525] [INSPIRE].
M. Gleiser and D. Sicilia, Analytical characterization of oscillon energy and lifetime, Phys. Rev. Lett. 101 (2008) 011602 [arXiv:0804.0791] [INSPIRE].
M. Gleiser and J. Thorarinson, A phase transition in U(1) configuration space: oscillons as remnants of vortex-antivortex annihilation, Phys. Rev. D 76 (2007) 041701 [hep-th/0701294] [INSPIRE].
M.P. Hertzberg, Quantum radiation of oscillons, Phys. Rev. D 82 (2010) 045022 [arXiv:1003.3459] [INSPIRE].
P. Salmi and M. Hindmarsh, Radiation and relaxation of oscillons, Phys. Rev. D 85 (2012) 085033 [arXiv:1201.1934] [INSPIRE].
M.A. Amin, Inflaton fragmentation: emergence of pseudo-stable inflaton lumps (oscillons) after inflation, arXiv:1006.3075 [INSPIRE].
M.A. Amin and D. Shirokoff, Flat-top oscillons in an expanding universe, Phys. Rev. D 81 (2010) 085045 [arXiv:1002.3380] [INSPIRE].
M.A. Amin, K-oscillons: oscillons with non-canonical kinetic terms, Phys. Rev. D 87 (2013) 123505 [arXiv:1303.1102] [INSPIRE].
M. Gleiser, N. Graham and N. Stamatopoulos, Generation of coherent structures after cosmic inflation, Phys. Rev. D 83 (2011) 096010 [arXiv:1103.1911] [INSPIRE].
E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].
L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].
P. Adshead, R. Easther, J. Pritchard and A. Loeb, Inflation and the scale dependent spectral index: prospects and strategies, JCAP 02 (2011) 021 [arXiv:1007.3748] [INSPIRE].
M.J. Mortonson, H.V. Peiris and R. Easther, Bayesian analysis of inflation: parameter estimation for single field models, Phys. Rev. D 83 (2011) 043505 [arXiv:1007.4205] [INSPIRE].
S. Khlebnikov and I. Tkachev, Relic gravitational waves produced after preheating, Phys. Rev. D 56 (1997) 653 [hep-ph/9701423] [INSPIRE].
R. Easther and E.A. Lim, Stochastic gravitational wave production after inflation, JCAP 04 (2006) 010 [astro-ph/0601617] [INSPIRE].
R. Easther, J. Giblin, John T. and E.A. Lim, Gravitational wave production at the end of inflation, Phys. Rev. Lett. 99 (2007) 221301 [astro-ph/0612294] [INSPIRE].
J. García-Bellido and D.G. Figueroa, A stochastic background of gravitational waves from hybrid preheating, Phys. Rev. Lett. 98 (2007) 061302 [astro-ph/0701014] [INSPIRE].
R. Easther, J.T. Giblin and E.A. Lim, Gravitational waves from the end of inflation: computational strategies, Phys. Rev. D 77 (2008) 103519 [arXiv:0712.2991] [INSPIRE].
J. García-Bellido, D.G. Figueroa and A. Sastre, A gravitational wave background from reheating after hybrid inflation, Phys. Rev. D 77 (2008) 043517 [arXiv:0707.0839] [INSPIRE].
J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman and J.-P. Uzan, Theory and numerics of gravitational waves from preheating after inflation, Phys. Rev. D 76 (2007) 123517 [arXiv:0707.0875] [INSPIRE].
L.R. Price and X. Siemens, Stochastic backgrounds of gravitational waves from cosmological sources: techniques and applications to preheating, Phys. Rev. D 78 (2008) 063541 [arXiv:0805.3570] [INSPIRE].
J.-F. Dufaux, G. Felder, L. Kofman and O. Navros, Gravity waves from tachyonic preheating after hybrid inflation, JCAP 03 (2009) 001 [arXiv:0812.2917] [INSPIRE].
A. Kusenko and A. Mazumdar, Gravitational waves from fragmentation of a primordial scalar condensate into Q-balls, Phys. Rev. Lett. 101 (2008) 211301 [arXiv:0807.4554] [INSPIRE].
A. Mazumdar and H. Stoica, Exciting gauge field and gravitons in a brane-anti-brane annihilation, Phys. Rev. Lett. 102 (2009) 091601 [arXiv:0807.2570] [INSPIRE].
WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
J. Martin and C. Ringeval, First CMB constraints on the inflationary reheating temperature, Phys. Rev. D 82 (2010) 023511 [arXiv:1004.5525] [INSPIRE].
Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].
R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].
R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010) 011 [arXiv:1008.3375] [INSPIRE].
R. Easther, H. Finkel and N. Roth, PSpectRe: a Pseudo-Spectral code for (p)Reheating, JCAP 10 (2010) 025 [arXiv:1005.1921] [INSPIRE].
A.V. Frolov, DEFROST: a new code for simulating preheating after inflation, JCAP 11 (2008) 009 [arXiv:0809.4904] [INSPIRE].
Planck collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
H. Peiris, R. Easther and R. Flauger, Constraining monodromy inflation, JCAP 09 (2013) 018 [arXiv:1303.2616] [INSPIRE].
R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].
S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, U.S.A. (1972).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, SY., Copeland, E.J., Easther, R. et al. Gravitational waves from oscillon preheating. J. High Energ. Phys. 2013, 26 (2013). https://doi.org/10.1007/JHEP10(2013)026
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2013)026