Abstract
Experiments with paramagnetic ground or metastable excited states of molecules (ThO, HfF+, YbF, YbOH, BaF, PbO, etc.) provide strong constraints on the electron electric dipole moment (EDM) and the coupling constant CSP of contact semileptonic interaction. We compute new contributions to CSP arising from the nucleon EDMs due to the combined electric and magnetic electron-nucleon interaction. This allows us to improve limits from the experiments with paramagnetic molecules on the CP-violating parameters, such as the proton EDM, |dp| < 1.1 × 10−23e·cm, the QCD vacuum angle, \( \left|\overline{\theta}\right| \) < 1.4 × 10−8, as well as the quark chromo-EDMs and the π-meson-nucleon couplings. Our results may also be used to search for the axion dark matter which produces oscillating \( \overline{\theta} \).
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].
M. Kobayashi and T. Maskawa, C P -violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].
R.D. Peccei and H.R. Quinn, C P conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
N. Yamanaka, B.K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi and B.P. Das, Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation, Eur. Phys. J. A 53 (2017) 54 [arXiv:1703.01570] [INSPIRE].
T.E. Chupp, P. Fierlinger, M.J. Ramsey-Musolf and J.T. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91 (2019) 015001.
W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel and E.N. Fortson, Improved limit on the permanent electric dipole moment of 199Hg, Phys. Rev. Lett. 102 (2009) 101601 [arXiv:0901.2328] [INSPIRE].
C.A. Baker et al., Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt and E.A. Hinds, Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].
ACME collaboration, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
R.H. Parker et al., First measurement of the atomic electric dipole moment of 225Ra, Phys. Rev. Lett. 114 (2015) 233002 [arXiv:1504.07477] [INSPIRE].
J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].
B. Graner, Y. Chen, E.G. Lindahl and B.R. Heckel, Reduced limit on the permanent electric dipole moment of 199Hg, Phys. Rev. Lett. 116 (2016) 161601 [Erratum ibid. 119 (2017) 119901] [arXiv:1601.04339] [INSPIRE].
G.E. Harrison, P.G.H. Sandars and S.J. Wright, Experimental limit on the proton electric dipole moment, Phys. Rev. Lett. 23 (1969) 274.
E.A. Hinds and P.G.H. Sandars, Experiment to search for P- and T-violating interactions in the hyperfine structure of thallium fluoride, Phys. Rev. A 21 (1980) 480.
D.A. Wilkening, N.F. Ramsey and D.J. Larson, Search for P and T violations in the hyperfine structure of thallium fluoride, Phys. Rev. A 29 (1984) 425 [INSPIRE].
D. Schropp, D. Cho, T. Vold and E.A. Hinds, New limits on time-reversal invariance from the hyperfine structure of thallium fluoride, Phys. Rev. Lett. 59 (1987) 991 [INSPIRE].
D. Cho, K. Sangster and E.A. Hinds, Search for time-reversal-symmetry violation in thallium fluoride using a jet source, Phys. Rev. A 44 (1991) 2783 [INSPIRE].
T.G. Vold, F.J. Raab, B.R. Heckel and E.N. Fortson, Search for a permanent electric dipole moment on the 129Xe atom, Phys. Rev. Lett. 52 (1984) 2229 [INSPIRE].
T.E. Chupp, R.J. Hoare, R.L. Walsworth and B. Wu, Spin-exchange-pumped 3He and 129Xe zeeman masers, Phys. Rev. Lett. 72 (1994) 2363 [INSPIRE].
R.E. Stoner, M.A. Rosenberry, J.T. Wright, T.E. Chupp, E.R. Oteiza and R.L. Walsworth, Demonstration of a two species noble gas maser, Phys. Rev. Lett. 77 (1996) 3971 [INSPIRE].
D. Bear et al., Improved frequency stability of the dual-noble-gas maser, Phys. Rev. A 57 (1998) 5006 [INSPIRE].
M.A. Rosenberry and T.E. Chupp, Atomic electric dipole moment measurement using spin exchange pumped masers of 129Xe and 3He, Phys. Rev. Lett. 86 (2001) 22.
M.V. Romalis, W.C. Griffith and E.N. Fortson, New limit on the permanent electric dipole moment of 199Hg, Phys. Rev. Lett. 86 (2001) 2505 [hep-ex/0012001] [INSPIRE].
M. Bishof et al., Improved limit on the 225Ra electric dipole moment, Phys. Rev. C 94 (2016) 025501 [arXiv:1606.04931] [INSPIRE].
H. Loh et al., Precision spectroscopy of polarized molecules in an ion trap, Science 342 (2013) 1220.
S. Eckel, P. Hamilton, E. Kirilov, H.W. Smith and D. DeMille, Search for the electron electric dipole moment using Ω-doublet levels in PbO, Phys. Rev. A 87 (2013) 052130 [arXiv:1303.3075] [INSPIRE].
W.B. Cairncross et al., Precision measurement of the electron’s electric dipole moment using trapped molecular ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].
NL-eEDM collaboration, Measuring the electric dipole moment of the electron in baf, Eur. Phys. J. D 72 (2018) 197 [arXiv:1804.10012] [INSPIRE].
ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
V.V. Flambaum, M. Pospelov, A. Ritz and Y.V. Stadnik, Sensitivity of EDM experiments in paramagnetic atoms and molecules to hadronic CP violation, Phys. Rev. D 102 (2020) 035001 [arXiv:1912.13129] [INSPIRE].
T.S. Roussy et al., Experimental constraint on axion-like particle coupling over seven orders of magnitude in mass, arXiv:2006.15787 [INSPIRE].
P.W. Graham and S. Rajendran, Axion dark matter detection with cold molecules, Phys. Rev. D 84 (2011) 055013 [arXiv:1101.2691] [INSPIRE].
L.I. Schiff, Measurability of nuclear electric dipole moments, Phys. Rev. 132 (1963) 2194 [INSPIRE].
O.P. Sushkov, V.V. Flambaum and I.B. Khriplovich, Possibility of investigating P- and T-odd nuclear forces in atomic and molecular experiments, Zh. Eksp. Teor. Fiz. 87 (1984) 1521.
V.V. Flambaum, I.B. Khriplovich and O.P. Sushkov, On the P- and T-nonconserving nuclear moments, Nucl. Phys. A 449 (1986) 750 [INSPIRE].
V.V. Flambaum, Spin hedgehog and collective magnetic quadrupole moments induced by parity and time invariance violating interaction, Phys. Lett. B 320 (1994) 211 [INSPIRE].
V.A. Dzuba, V.V. Flambaum, P.G. Silvestrov and O.P. Sushkov, Shielding of an external electric field in atoms, Phys. Lett. A 118 (1986) 177.
V.V. Flambaum, Shielding of an external oscillating electric field inside atoms, Phys. Rev. A 98 (2018) 043408 [arXiv:1804.08898] [INSPIRE].
H.B. Tran Tan, V.V. Flambaum and I.B. Samsonov, Screening and enhancement of an oscillating electric field in molecules, Phys. Rev. A 99 (2019) 013430 [arXiv:1812.03312] [INSPIRE].
V.V. Flambaum and I.B. Samsonov, Resonant enhancement of an oscillating electric field in an atom, Phys. Rev. A 98 (2018) 053437 [arXiv:1810.02601] [INSPIRE].
V.V. Flambaum and I.B. Samsonov, Electric field on nucleus due to phonon lattice oscillations in solid states, Phys. Rev. Res. 2 (2020) 023042.
V.V. Flambaum, J.S.M. Ginges and G. Mititelu, Parity and time reversal violating nuclear polarizability, nucl-th/0010100 [INSPIRE].
V.V. Flambaum and I.B. Khriplovich, New bounds on the electric dipole moment of the electron and on T-odd electron-nucleon coupling, Zh. Eksp. Teor. Fiz. 89 (1985) 1505.
J. Bsaisou, U.-G. Meißner, A. Nogga and A. Wirzba, P- and T-violating Lagrangians in chiral effective field theory and nuclear electric dipole moments, Annals Phys. 359 (2015) 317 [arXiv:1412.5471] [INSPIRE].
G. Plunien, B. Müller, W. Greiner and G. Soff, Nuclear polarization in heavy atoms and superheavy quasiatoms, Phys. Rev. A 43 (1991) 5853.
K. Pachucki, D. Leibfried and T.W. Hänsch, Nuclear-structure correction to the Lamb shift, Phys. Rev. A 48 (1993) R1.
G. Plunien and G. Soff, Nuclear-polarization contribution to the Lamb shift in actinide nuclei, Phys. Rev. A 51 (1995) 1119 [INSPIRE].
S.G. Nilsson, Binding states of individual nucleons in strongly deformed nuclei, Dan. Mat. Fys. Medd. 29 (1955) 1.
I.B. Khriplovich, Parity nonconservation in atomic phenomena, Gordon and Breach Science Publishers, (1991).
P. Sarriguren, E. Moya de Guerra and R. Nojarov, Spin M1 excitations in deformed nuclei from self-consistent Hartree-Fock plus random-phase approximation, Phys. Rev. C 54 (1996) 690 [INSPIRE].
T. Fleig and M. Jung, Model-independent determinations of the electron EDM and the role of diamagnetic atoms, JHEP 07 (2018) 012 [arXiv:1802.02171] [INSPIRE].
M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. 91 (1980) 487] [INSPIRE].
W.H. Hockings and U. van Kolck, The electric dipole form factor of the nucleon, Phys. Lett. B 605 (2005) 273 [nucl-th/0508012] [INSPIRE].
K. Ottnad, B. Kubis, U.-G. Meissner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981] [INSPIRE].
F.-K. Guo and U.-G. Meissner, Baryon electric dipole moments from strong CP violation, JHEP 12 (2012) 097 [arXiv:1210.5887] [INSPIRE].
M. Pospelov and A. Ritz, Theta-induced electric dipole moment of the neutron via QCD sum rules, Phys. Rev. Lett. 83 (1999) 2526 [hep-ph/9904483] [INSPIRE].
V.V. Flambaum, D. DeMille and M.G. Kozlov, Time-reversal symmetry violation in molecules induced by nuclear magnetic quadrupole moments, Phys. Rev. Lett. 113 (2014) 103003 [arXiv:1406.6479] [INSPIRE].
M. Pospelov and A. Ritz, Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks, Phys. Rev. D 63 (2001) 073015 [hep-ph/0010037] [INSPIRE].
F. Abusaif et al., Storage ring to search for electric dipole moments of charged particles — feasibility study, arXiv:1912.07881 [INSPIRE].
J. de Vries, E. Mereghetti and A. Walker-Loud, Baryon mass splittings and strong CP violation in SU(3) chiral perturbation theory, Phys. Rev. C 92 (2015) 045201 [arXiv:1506.06247] [INSPIRE].
J. Bsaisou et al., Nuclear electric dipole moments in chiral effective field theory, JHEP 03 (2015) 104 [Erratum ibid. 05 (2015) 083] [arXiv:1411.5804] [INSPIRE].
J. de Vries and U.-G. Meißner, Violations of discrete space-time symmetries in chiral effective field theory, Int. J. Mod. Phys. E 25 (2016) 1641008 [arXiv:1509.07331] [INSPIRE].
J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meissner, A. Nogga and A. Wirzba, The electric dipole moment of the deuteron from the QCD θ-term, Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306] [INSPIRE].
nEDM collaboration, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
V.V. Flambaum and V.A. Dzuba, Electric dipole moments of atoms and molecules produced by enhanced nuclear Schiff moments, Phys. Rev. A 101 (2020) 042504 [arXiv:1912.03598] [INSPIRE].
B.K. Sahoo, Improved limits on the hadronic and semihadronic CP violating parameters and role of a dark force carrier in the electric dipole moment of 199Hg, Phys. Rev. D 95 (2017) 013002 [arXiv:1612.09371] [INSPIRE].
N. Sachdeva et al., New limit on the permanent electric dipole moment of 129Xe using 3He comagnetometry and squid detection, Phys. Rev. Lett. 123 (2019) 143003 [arXiv:1902.02864] [INSPIRE].
F. Allmendinger et al., Measurement of the permanent electric dipole moment of the 129Xe atom, Phys. Rev. A 100 (2019) 022505 [arXiv:1904.12295] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
S. Ban, J. Dobaczewski, J. Engel and A. Shukla, Fully self-consistent calculations of nuclear Schiff moments, Phys. Rev. C 82 (2010) 015501 [arXiv:1003.2598] [INSPIRE].
R. Szmytkowski, Recurrence and differential relations for spherical spinors, J. Math. Chem. 42 (2007) 397 [arXiv:1011.3433] [INSPIRE].
A. Bohr and B.R. Mottelson, Nuclear Structure, vol. 2, World Scientific, Singapore, (1998).
V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Quantum electrodynamics, vol. 4, Butterworth-Heinemann, (1982).
W. Greiner, Relativistic quantum mechanics: Wave Equations, vol. 2, Springer, (2000).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2004.10359
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Flambaum, V.V., Samsonov, I.B. & Tran Tan, H.B. Limits on CP-violating hadronic interactions and proton EDM from paramagnetic molecules. J. High Energ. Phys. 2020, 77 (2020). https://doi.org/10.1007/JHEP10(2020)077
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2020)077