Abstract
Recent high precision determinations of Vus and Vud indicate towards anomalies in the first row of the CKM matrix. Namely, determination of Vud from beta decays and of Vus from kaon decays imply a violation of first row unitarity at about 3σ level. Moreover, there is tension between determinations of Vus obtained from leptonic Kμ2 and semileptonic Kℓ3 kaon decays. These discrepancies can be explained if there exist extra vector-like quarks at the TeV scale, which have large enough mixings with the lighter quarks. In particular, extra vector-like weak singlets quarks can be thought as a solution to the CKM unitarity problem and an extra vector-like weak doublet can in principle resolve all tensions. The implications of this kind of mixings are examined against the flavour changing phenomena and SM precision tests. We consider separately the effects of an extra down-type isosinglet, up-type isosinglet and an isodoublet containing extra quarks of both up and down type, and determine available parameter spaces for each case. We find that the experimental constraints on flavor changing phenomena become more stringent with larger masses, so that the extra species should have masses no more than few TeV. Moreover, only one type of extra multiplet cannot entirely explain all the discrepancies, and some their combination is required, e.g. two species of isodoublet, or one isodoublet and one (up or down type) isosinglet. We show that these scenarios are testable with future experiments. Namely, if extra vector-like quarks are responsible for CKM anomalies, then at least one of them should be found at scale of few TeV, and anomalous weak isospin violating Z-boson couplings with light quarks should be detected if the experimental precision on Z hadronic decay rate is improved by a factor of 2 or so.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
B. Belfatto, R. Beradze and Z. Berezhiani, The CKM unitarity problem: A trace of new physics at the TeV scale?, Eur. Phys. J. C 80 (2020) 149 [arXiv:1906.02714] [INSPIRE].
B. Belfatto and Z. Berezhiani, How light the lepton flavor changing gauge bosons can be, Eur. Phys. J. C 79 (2019) 202 [arXiv:1812.05414] [INSPIRE].
Y. Grossman, E. Passemar and S. Schacht, On the Statistical Treatment of the Cabibbo Angle Anomaly, JHEP 07 (2020) 068 [arXiv:1911.07821] [INSPIRE].
F. Giacosa and G. Pagliara, Measurement of the neutron lifetime and inverse quantum Zeno effect, Phys. Rev. D 101 (2020) 056003 [arXiv:1906.10024] [INSPIRE].
A. M. Coutinho, A. Crivellin and C. A. Manzari, Global Fit to Modified Neutrino Couplings and the Cabibbo-Angle Anomaly, Phys. Rev. Lett. 125 (2020) 071802 [arXiv:1912.08823] [INSPIRE].
K. Cheung, W.-Y. Keung, C.-T. Lu and P.-Y. Tseng, Vector-like Quark Interpretation for the CKM Unitarity Violation, Excess in Higgs Signal Strength, and Bottom Quark Forward-Backward Asymmetry, JHEP 05 (2020) 117 [arXiv:2001.02853] [INSPIRE].
A. Crivellin and M. Hoferichter, β Decays as Sensitive Probes of Lepton Flavor Universality, Phys. Rev. Lett. 125 (2020) 111801 [arXiv:2002.07184] [INSPIRE].
M. Endo and S. Mishima, Muon g − 2 and CKM unitarity in extra lepton models, JHEP 08 (2020) 004 [arXiv:2005.03933] [INSPIRE].
B. Capdevila, A. Crivellin, C. A. Manzari and M. Montull, Explaining b → sℓ+ ℓ− and the Cabibbo angle anomaly with a vector triplet, Phys. Rev. D 103 (2021) 015032 [arXiv:2005.13542] [INSPIRE].
A. Crivellin, F. Kirk, C. A. Manzari and M. Montull, Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly, JHEP 12 (2020) 166 [arXiv:2008.01113] [INSPIRE].
M. Kirk, Cabibbo anomaly versus electroweak precision tests: An exploration of extensions of the Standard Model, Phys. Rev. D 103 (2021) 035004 [arXiv:2008.03261] [INSPIRE].
C. A. Manzari, A. M. Coutinho and A. Crivellin, Modified lepton couplings and the Cabibbo-angle anomaly, PoS LHCP2020 (2021) 242 [arXiv:2009.03877] [INSPIRE].
A. K. Alok, A. Dighe, S. Gangal and J. Kumar, The role of non-universal Z couplings in explaining the Vus anomaly, Nucl. Phys. B 971 (2021) 115538 [arXiv:2010.12009] [INSPIRE].
A. Crivellin, C. A. Manzari, M. Alguero and J. Matias, Combined Explanation of the Z → \( b\overline{b} \) Forward-Backward Asymmetry, the Cabibbo Angle Anomaly, τ → μνν and b → sℓ+ ℓ− Data, Phys. Rev. Lett. 127 (2021) 011801 [arXiv:2010.14504] [INSPIRE].
A. Crivellin, F. Kirk, C. A. Manzari and L. Panizzi, Searching for lepton flavor universality violation and collider signals from a singly charged scalar singlet, Phys. Rev. D 103 (2021) 073002 [arXiv:2012.09845] [INSPIRE].
A. Crivellin, M. Hoferichter and C. A. Manzari, Fermi Constant from Muon Decay Versus Electroweak Fits and Cabibbo-Kobayashi-Maskawa Unitarity, Phys. Rev. Lett. 127 (2021) 071801 [arXiv:2102.02825] [INSPIRE].
M. Moulson, Experimental determination of Vus from kaon decays, PoS CKM2016 (2017) 033 [arXiv:1704.04104] [INSPIRE].
Flavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
Fermilab Lattice and MILC collaborations, |Vus| from Kℓ3 decay and four-flavor lattice QCD, Phys. Rev. D 99 (2019) 114509 [arXiv:1809.02827] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
J. C. Hardy and I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2014 critical survey, with precise results for Vud and CKM unitarity, Phys. Rev. C 91 (2015) 025501 [arXiv:1411.5987] [INSPIRE].
J. C. Hardy and I. S. Towner, Superallowed 0+ → 0+ nuclear β decays: 2020 critical survey, with implications for Vud and CKM unitarity, Phys. Rev. C 102 (2020) 045501 [INSPIRE].
J. C. Hardy and I. S. Towner, |Vud| from nuclear β decays, PoS CKM2016 (2016) 028 [INSPIRE].
MuLan collaboration, Detailed Report of the MuLan Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant, Phys. Rev. D 87 (2013) 052003 [arXiv:1211.0960] [INSPIRE].
W. J. Marciano and A. Sirlin, Improved calculation of electroweak radiative corrections and the value of Vud, Phys. Rev. Lett. 96 (2006) 032002 [hep-ph/0510099] [INSPIRE].
C.-Y. Seng, M. Gorchtein, H. H. Patel and M. J. Ramsey-Musolf, Reduced Hadronic Uncertainty in the Determination of Vud, Phys. Rev. Lett. 121 (2018) 241804 [arXiv:1807.10197] [INSPIRE].
A. Czarnecki, W. J. Marciano and A. Sirlin, Radiative Corrections to Neutron and Nuclear Beta Decays Revisited, Phys. Rev. D 100 (2019) 073008 [arXiv:1907.06737] [INSPIRE].
C.-Y. Seng, X. Feng, M. Gorchtein and L.-C. Jin, Joint lattice QCD-dispersion theory analysis confirms the quark-mixing top-row unitarity deficit, Phys. Rev. D 101 (2020) 111301 [arXiv:2003.11264] [INSPIRE].
L. Hayen, Standard model \( \mathcal{O}\left(\alpha \right) \) renormalization of gA and its impact on new physics searches, Phys. Rev. D 103 (2021) 113001 [arXiv:2010.07262] [INSPIRE].
K. Shiells, P. G. Blunden and W. Melnitchouk, Electroweak axial structure functions and improved extraction of the Vud CKM matrix element, Phys. Rev. D 104 (2021) 033003 [arXiv:2012.01580] [INSPIRE].
I. S. Towner and J. C. Hardy, The evaluation of V(ud) and its impact on the unitarity of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix, Rept. Prog. Phys. 73 (2010) 046301 [INSPIRE].
Z. Berezhiani, Neutron lifetime puzzle and neutron-mirror neutron oscillation, Eur. Phys. J. C 79 (2019) 484 [arXiv:1807.07906] [INSPIRE].
A. Czarnecki, W. J. Marciano and A. Sirlin, Neutron Lifetime and Axial Coupling Connection, Phys. Rev. Lett. 120 (2018) 202002 [arXiv:1802.01804] [INSPIRE].
D. Pocanic et al., Precise measurement of the π+ → π0 e+ ν branching ratio, Phys. Rev. Lett. 93 (2004) 181803 [hep-ex/0312030] [INSPIRE].
M. Di Carlo et al., Light-meson leptonic decay rates in lattice QCD+QED, Phys. Rev. D 100 (2019) 034514 [arXiv:1904.08731] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].
C.-Y. Seng, D. Galviz, M. Gorchtein and U. G. Meißner, High-precision determination of the Ke3 radiative corrections, Phys. Lett. B 820 (2021) 136522 [arXiv:2103.00975] [INSPIRE].
G. Bregar and N. S. M. Borstnik, New experimental data for the quarks mixing matrix are in better agreement with the spin-charge-family theory predictions, Bled Workshops Phys. 15 (2014) 20 [arXiv:1412.5866] [INSPIRE].
S. L. Glashow, J. Iliopoulos and L. Maiani, Weak Interactions with Lepton-Hadron Symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].
S. L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].
E. A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].
F. Gursey, P. Ramond and P. Sikivie, A Universal Gauge Theory Model Based on E6, Phys. Lett. B 60 (1976) 177 [INSPIRE].
Y. Achiman and B. Stech, Quark Lepton Symmetry and Mass Scales in an E6 Unified Gauge Model, Phys. Lett. B 77 (1978) 389 [INSPIRE].
Z. G. Berezhiani and G. R. Dvali, Possible solution of the hierarchy problem in supersymmetric grand unification theories, Bull. Lebedev Phys. Inst. 5 (1989) 55 [Kratk. Soobshch. Fiz. 5 (1989) 42] [INSPIRE].
R. Barbieri, G. R. Dvali, A. Strumia, Z. Berezhiani and L. J. Hall, Flavor in supersymmetric grand unification: A Democratic approach, Nucl. Phys. B 432 (1994) 49 [hep-ph/9405428] [INSPIRE].
Z. Berezhiani, SUSY SU(6) GIFT for doublet-triplet splitting and fermion masses, Phys. Lett. B 355 (1995) 481 [hep-ph/9503366] [INSPIRE].
Z. G. Berezhiani, The Weak Mixing Angles in Gauge Models with Horizontal Symmetry: A New Approach to Quark and Lepton Masses, Phys. Lett. B 129 (1983) 99 [INSPIRE].
S. Dimopoulos, Natural Generation of Fermion Masses, Phys. Lett. B 129 (1983) 417 [INSPIRE].
Z. G. Berezhiani, Horizontal Symmetry and Quark-Lepton Mass Spectrum: The SU(5) ⨂ SU(3)H Model, Phys. Lett. B 150 (1985) 177 [INSPIRE].
J. Bagger, S. Dimopoulos, H. Georgi and S. Raby, Theories of Fermion Masses, SLAC-PUB-3342 (1984).
Z. G. Berezhiani and M. Y. Khlopov, The Theory of broken gauge symmetry of families (in Russian), Sov. J. Nucl. Phys. 51 (1990) 739 [INSPIRE].
Z. G. Berezhiani and M. Y. Khlopov, Physical and astrophysical consequences of breaking of the symmetry of families (in Russian), Sov. J. Nucl. Phys. 51 (1990) 935 [INSPIRE].
S. F. King and G. G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520 (2001) 243 [hep-ph/0108112] [INSPIRE].
Z. Berezhiani and A. Rossi, Predictive grand unified textures for quark and neutrino masses and mixings, Nucl. Phys. B 594 (2001) 113 [hep-ph/0003084] [INSPIRE].
J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].
M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].
Z. G. Berezhiani and M. Y. Khlopov, Physics of cosmological dark matter in the theory of broken family symmetry (in Russian), Sov. J. Nucl. Phys. 52 (1990) 60 [INSPIRE].
Z. G. Berezhiani and M. Y. Khlopov, Cosmology of Spontaneously Broken Gauge Family Symmetry, Z. Phys. C 49 (1991) 73 [INSPIRE].
Z. G. Berezhiani, A. S. Sakharov and M. Y. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys. 55 (1992) 1063 [INSPIRE].
A. E. Nelson, Naturally Weak CP-violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].
S. M. Barr, Solving the Strong CP Problem Without the Peccei-Quinn Symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].
K. S. Babu and R. N. Mohapatra, A Solution to the Strong CP Problem Without an Axion, Phys. Rev. D 41 (1990) 1286 [INSPIRE].
Z. G. Berezhiani, On the possibility of a solution to the strong CP problem without axion in a SU(3)H family symmetry model, Mod. Phys. Lett. A 6 (1991) 2437 [INSPIRE].
Z. G. Berezhiani, R. N. Mohapatra and G. Senjanović, Planck scale physics and solutions to the strong CP problem without axion, Phys. Rev. D 47 (1993) 5565 [hep-ph/9212318] [INSPIRE].
Z. G. Berezhiani and J. L. Chkareuli, Low-energy horizontal symmetry of SU(3)H × U(1)H and B − \( \overline{B} \) oscillation (in Russian), Sov. J. Nucl. Phys. 52 (1990) 383 [INSPIRE].
S. Rajpoot, Seesaw Masses for Quarks and Leptons, Phys. Rev. D 36 (1987) 1479 [INSPIRE].
A. Davidson and K. C. Wali, Universal Seesaw Mechanism?, Phys. Rev. Lett. 59 (1987) 393 [INSPIRE].
Z. G. Berezhiani and R. Rattazzi, Universal seesaw and radiative quark mass hierarchy, Phys. Lett. B 279 (1992) 124 [INSPIRE].
Z. G. Berezhiani and R. Rattazzi, Inverse hierarchy approach to fermion masses, Nucl. Phys. B 407 (1993) 249 [hep-ph/9212245] [INSPIRE].
Z. G. Berezhiani, Predictive SUSY SO(10) model with very low tan Beta, Phys. Lett. B 355 (1995) 178 [hep-ph/9505384] [INSPIRE].
G. Anderson, S. Raby, S. Dimopoulos, L. J. Hall and G. D. Starkman, A Systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [INSPIRE].
Z. Berezhiani and Z. Tavartkiladze, More missing VEV mechanism in supersymmetric SO(10) model, Phys. Lett. B 409 (1997) 220 [hep-ph/9612232] [INSPIRE].
Y. Koide and H. Fusaoka, Top quark mass enhancement in a seesaw type quark mass matrix, Z. Phys. C 71 (1996) 459 [hep-ph/9505201] [INSPIRE].
Y. Koide, Universal seesaw mass matrix model with an S3 symmetry, Phys. Rev. D 60 (1999) 077301 [hep-ph/9905416] [INSPIRE].
Z. Berezhiani and F. Nesti, Supersymmetric SO(10) for fermion masses and mixings: Rank-1 structures of flavor, JHEP 03 (2006) 041 [hep-ph/0510011] [INSPIRE].
Z. Berezhiani, Unified picture of the particle and sparticle masses in SUSY GUT, Phys. Lett. B 417 (1998) 287 [hep-ph/9609342] [INSPIRE].
A. Anselm and Z. Berezhiani, Weak mixing angles as dynamical degrees of freedom, Nucl. Phys. B 484 (1997) 97 [hep-ph/9605400] [INSPIRE].
Z. Berezhiani and A. Rossi, Flavor structure, flavor symmetry and supersymmetry, Nucl. Phys. B Proc. Suppl. 101 (2001) 410 [hep-ph/0107054] [INSPIRE].
L. Lavoura and J. P. Silva, Bounds on the mixing of the down type quarks with vector-like singlet quarks, Phys. Rev. D 47 (1993) 1117 [INSPIRE].
K. Ishiwata, Z. Ligeti and M. B. Wise, New Vector-Like Fermions and Flavor Physics, JHEP 10 (2015) 027 [arXiv:1506.03484] [INSPIRE].
CMS collaboration, Search for vectorlike light-flavor quark partners in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. D 97 (2018) 072008 [arXiv:1708.02510] [INSPIRE].
G. Buchalla, A. J. Buras and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
A. J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, K + → \( {\pi}^{+}v\overline{v} \) and KL → \( {\pi}^0v\overline{v} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].
J. Brod and M. Gorbahn, Electroweak Corrections to the Charm Quark Contribution to K + → \( {\pi}^{+}v\overline{v} \), Phys. Rev. D 78 (2008) 034006 [arXiv:0805.4119] [INSPIRE].
F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from Kl3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].
NA62 collaboration, An investigation of the very rare K + → \( {\pi}^{+}v\overline{v} \) decay, JHEP 11 (2020) 042 [arXiv:2007.08218] [INSPIRE].
A. J. Buras, Weak Hamiltonian, CP-violation and rare decays, in Les Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of Particle Interactions, pp. 281–539 (1998) [hep-ph/9806471] [INSPIRE].
A. J. Buras and R. Fleischer, Quark mixing, CP-violation and rare decays after the top quark discovery, Adv. Ser. Direct. High Energy Phys. 15 (1998) 65 [hep-ph/9704376] [INSPIRE].
G. Isidori and R. Unterdorfer, On the short distance constraints from KL,S → μ+ μ−, JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].
V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].
LHCb collaboration, Constraints on the \( {K}_S^0 \) → μ+ μ− Branching Fraction, Phys. Rev. Lett. 125 (2020) 231801 [arXiv:2001.10354] [INSPIRE].
T. Inami and C. S. Lim, Effects of Superheavy Quarks and Leptons in Low-Energy Weak Processes KL → \( \mu \overline{\mu} \), K + → \( {\pi}^{+}v\overline{v} \) and K 0 ↔ \( {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
Z. Bai, N. H. Christ, T. Izubuchi, C. T. Sachrajda, A. Soni and J. Yu, KL − KS Mass Difference from Lattice QCD, Phys. Rev. Lett. 113 (2014) 112003 [arXiv:1406.0916] [INSPIRE].
Z. Bai, N. H. Christ and C. T. Sachrajda, The KL-KS Mass Difference, EPJ Web Conf. 175 (2018) 13017 [INSPIRE].
G. C. Branco, L. Lavoura and J. P. Silva, CP Violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].
A. A. Petrov, Dipenguin-like contributions to \( {D}^0\hbox{-} {\overline{D}}^0 \) mixing, AIP Conf. Proc. 432 (1998) 852 [hep-ph/9712279] [INSPIRE].
H.-Y. Cheng and C.-W. Chiang, Long-Distance Contributions to \( {D}^0\hbox{-} {\overline{D}}^0 \) Mixing Parameters, Phys. Rev. D 81 (2010) 114020 [arXiv:1005.1106] [INSPIRE].
LHCb collaboration, Observation of the Mass Difference Between Neutral Charm-Meson Eigenstates, Phys. Rev. Lett. 127 (2021) 111801 [arXiv:2106.03744] [INSPIRE].
C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Bs,d → l+ l− in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].
ATLAS collaboration, Study of the rare decays of \( {B}_s^0 \) and B0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098 [arXiv:1812.03017] [INSPIRE].
Belle collaboration, Improved measurement of the electroweak penguin process B → Xsl+ l−, Phys. Rev. D 72 (2005) 092005 [hep-ex/0503044] [INSPIRE].
BaBar collaboration, Measurement of the B → Xsl+ l− branching fraction and search for direct CP-violation from a sum of exclusive final states, Phys. Rev. Lett. 112 (2014) 211802 [arXiv:1312.5364] [INSPIRE].
T. Huber, T. Hurth and E. Lunghi, Inclusive \( \overline{B} \) → Xsℓ+ ℓ−: complete angular analysis and a thorough study of collinear photons, JHEP 06 (2015) 176 [arXiv:1503.04849] [INSPIRE].
A. Ghinculov, T. Hurth, G. Isidori and Y. P. Yao, The Rare decay B → Xsl+ l− to NNLL precision for arbitrary dilepton invariant mass, Nucl. Phys. B 685 (2004) 351 [hep-ph/0312128] [INSPIRE].
LHCb collaboration, First measurement of the differential branching fraction and CP asymmetry of the B± → π± μ+ μ− decay, JHEP 10 (2015) 034 [arXiv:1509.00414] [INSPIRE].
A. Ali, A. Y. Parkhomenko and A. V. Rusov, Precise Calculation of the Dilepton Invariant-Mass Spectrum and the Decay Rate in B± → π± μ+ μ− in the SM, Phys. Rev. D 89 (2014) 094021 [arXiv:1312.2523] [INSPIRE].
Fermilab Lattice and MILC collaborations, B → πℓℓ form factors for new-physics searches from lattice QCD, Phys. Rev. Lett. 115 (2015) 152002 [arXiv:1507.01618] [INSPIRE].
Belle collaboration, Search for B → πℓ+ ℓ− Decays at Belle, Phys. Rev. D 78 (2008) 011101 [arXiv:0804.3656] [INSPIRE].
BaBar collaboration, Search for the rare decays B → πℓ+ ℓ− and B0 → ηℓ+ ℓ−, Phys. Rev. D 88 (2013) 032012 [arXiv:1303.6010] [INSPIRE].
ALEPH, DELPHI, L3, OPAL and SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2103.05549
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Belfatto, B., Berezhiani, Z. Are the CKM anomalies induced by vector-like quarks? Limits from flavor changing and Standard Model precision tests. J. High Energ. Phys. 2021, 79 (2021). https://doi.org/10.1007/JHEP10(2021)079
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2021)079