Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the perturbative S-matrix of generalized sine-Gordon models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by its relation to the Pohlmeyer reduction of AdS 5 × S 5 superstring theory we continue the investigation of the generalized sine-Gordon model defined by SO(N + 1)/SO(N) gauged WZW theory with an integrable potential. Extending our previous work (arXiv:0912.2958) we compute the one-loop two-particle S-matrix for the elementary massive excitations. In the N = 2 case corresponding to the complex sine-Gordon theory it agrees with the charge-one sector of the quantum soliton S-matrix proposed in hep-th/9410140. In the case of N > 2 when the gauge group SO(N) is non-abelian we find a curious anomaly in the Yang-Baxter equation which we interpret as a gauge artifact related to the fact that the scattered particles are not singlets under the residual global subgroup of the gauge group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hoare and A.A. Tseytlin, Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory, JHEP 02 (2010) 094 [arXiv:0912.2958] [SPIRES].

    Article  ADS  Google Scholar 

  2. K. Pohlmeyer, Integrable Hamiltonian Systems and Interactions Through Quadratic Constraints, Commun. Math. Phys. 46 (1976) 207 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. I. Bakas, Conservation laws and geometry of perturbed coset models, Int. J. Mod. Phys. A 9 (1994) 3443 [hep-th/9310122] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. Q.-H. Park, Deformed coset models from gauged WZW actions, Phys. Lett. B 328 (1994) 329 [hep-th/9402038] [SPIRES].

    ADS  Google Scholar 

  5. T.J. Hollowood, J.L. Miramontes and Q.-H. Park, Massive integrable soliton theories, Nucl. Phys. B 445 (1995) 451 [hep-th/9412062] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. I. Bakas, Q.-H. Park and H.-J. Shin, Lagrangian Formulation of Symmetric Space sine-Gordon Models, Phys. Lett. B 372 (1996) 45 [hep-th/9512030] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. C.R. Fernandez-Pousa, M.V. Gallas, T.J. Hollowood and J.L. Miramontes, The symmetric space and homogeneous sine-Gordon theories, Nucl. Phys. B 484 (1997) 609 [hep-th/9606032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Grigoriev and A.A. Tseytlin, Pohlmeyer reduction of AdS 5 × S 5 superstring σ-model, Nucl. Phys. B 800 (2008) 450 [arXiv:0711.0155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. J.L. Miramontes, Pohlmeyer reduction revisited, JHEP 10 (2008) 087 [arXiv:0808.3365] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. H.J. De Vega and N.G. Sanchez, Exact integrability of strings in D-Dimensional de Sitter space-time, Phys. Rev. D 47 (1993) 3394 [SPIRES].

    ADS  Google Scholar 

  11. A. Mikhailov, An action variable of the sine-Gordon model, J. Geom. Phys. 56 (2006) 2429 [hep-th/0504035] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. A. Mikhailov, A nonlocal Poisson bracket of the sine-Gordon model, hep-th/0511069 [SPIRES].

  13. M. Grigoriev and A.A. Tseytlin, On reduced models for superstrings on AdS n × S n, Int. J. Mod. Phys. A 23 (2008) 2107 [arXiv:0806.2623] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. D.M. Hofman and J.M. Maldacena, Giant magnons, J. Phys. A 39 (2006) 13095 [hep-th/0604135] [SPIRES].

    MathSciNet  Google Scholar 

  15. H.-Y. Chen, N. Dorey and K. Okamura, Dyonic giant magnons, JHEP 09 (2006) 024 [hep-th/0605155] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. K. Okamura and R. Suzuki, A perspective on classical strings from complex sine-Gordon solitons, Phys. Rev. D 75 (2007) 046001 [hep-th/0609026] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. A. Jevicki, K. Jin, C. Kalousios and A. Volovich, Generating AdS String Solutions, JHEP 03 (2008) 032 [arXiv:0712.1193] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Jevicki and K. Jin, Solitons and AdS String Solutions, Int. J. Mod. Phys. A 23 (2008) 2289 [arXiv:0804.0412] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. T.J. Hollowood and J.L. Miramontes, Magnons, their Solitonic Avatars and the Pohlmeyer Reduction, JHEP 04 (2009) 060 [arXiv:0902.2405] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. T.J. Hollowood and J.L. Miramontes, The Relativistic Avatars of Giant Magnons and their S-matrix, JHEP 10 (2010) 012 [arXiv:1006.3667] [SPIRES].

    Article  ADS  Google Scholar 

  22. A. Mikhailov and S. Schäfer-Nameki, sine-Gordon-like action for the Superstring in AdS 5 × S 5, JHEP 05 (2008) 075 [arXiv:0711.0195] [SPIRES].

    Article  ADS  Google Scholar 

  23. R. Roiban and A.A. Tseytlin, UV finiteness of Pohlmeyer-reduced form of the AdS 5 × S 5 superstring theory, JHEP 04 (2009) 078 [arXiv:0902.2489] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. B. Hoare, Y. Iwashita and A.A. Tseytlin, Pohlmeyer-reduced form of string theory in AdS 5 × S 5 : semiclassical expansion, J. Phys. A 42 (2009) 375204 [arXiv:0906.3800] [SPIRES].

    MathSciNet  Google Scholar 

  25. Y. Iwashita, One-loop corrections to AdS 5 × S 5 superstring partition function via Pohlmeyer reduction, J. Phys. A 43 (2010) 345403 [arXiv:1005.4386] [SPIRES].

    Google Scholar 

  26. A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979) 253 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. E. Ogievetsky, P. Wiegmann and N. Reshetikhin, The Principal Chiral Field in Two-Dimensions on Classical Lie Algebras: The Bethe Ansatz Solution and Factorized Theory of Scattering, Nucl. Phys. B 280 (1987) 45 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. N. Dorey and T.J. Hollowood, Quantum scattering of charged solitons in the complex sine-Gordon model, Nucl. Phys. B 440 (1995) 215 [hep-th/9410140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Dorey, Exact S matrices, in Budapest 1996, Conformal field theories and integrable models, hep-th/9810026 [SPIRES].

  30. T. Klose, T. McLoughlin, R. Roiban and K. Zarembo, Worldsheet scattering in AdS 5 × S 5, JHEP 03 (2007) 094 [hep-th/0611169] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. N. Beisert and P. Koroteev, Quantum Deformations of the One-Dimensional Hubbard Model, J. Phys. A 41 (2008) 255204 [arXiv:0802.0777] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. N. Beisert, The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain, arXiv:1002.1097 [SPIRES].

  33. C.R. Fernandez-Pousa and J.L. Miramontes, Semi-classical spectrum of the homogeneous sine-Gordon theories, Nucl. Phys. B 518 (1998) 745 [hep-th/9706203] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. J.L. Miramontes and C.R. Fernandez-Pousa, Integrable quantum field theories with unstable particles, Phys. Lett. B 472(2000) 392 [hep-th/9910218] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. O.A. Castro-Alvaredo, A. Fring, C. Korff and J.L. Miramontes, Thermodynamic Bethe ansatz of the homogeneous sine-Gordon models, Nucl. Phys. B 575 (2000) 535 [hep-th/9912196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. O.A. Castro Alvaredo and J.L. Miramontes, Massive symmetric space sine-Gordon soliton theories and perturbed conformal field theory, Nucl. Phys. B 581 (2000) 643 [hep-th/0002219] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. O.A. Castro-Alvaredo, Bootstrap methods in 1 + 1 dimensional quantum field theories: The homogeneous sine-Gordon models, hep-th/0109212 [SPIRES].

  38. J.L. Miramontes, T-duality in massive integrable field theories: The homogeneous and complex sine-Gordon models, Nucl. Phys. B 702 (2004) 419 [hep-th/0408119] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. J.L. Miramontes, Searching for new homogeneous sine-Gordon theories using T-duality symmetries, J. Phys. A 41 (2008) 304032 [arXiv:0711.2826] [SPIRES].

    MathSciNet  Google Scholar 

  40. H.J. de Vega and J.M. Maillet, Renormalization Character And Quantum S Matrix For A Classically Integrable Theory, Phys. Lett. B 101 (1981) 302 [SPIRES].

    ADS  Google Scholar 

  41. H.J. de Vega and J.M. Maillet, Semiclassical Quantization Of The Complex Sine-Gordon Field Theory, Phys. Rev. D 28 (1983) 1441 [SPIRES].

    ADS  Google Scholar 

  42. J.M. Maillet, Quantum U(1) Invariant Theory From Integrable Classical Models, Phys. Rev. D 26 (1982) 2755 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  43. A.A. Tseytlin, Effective action of gauged WZW model and exact string solutions, Nucl. Phys. B 399 (1993) 601 [hep-th/9301015] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. A.A. Tseytlin, Conformal σ-models corresponding to gauged Wess-Zumino-Witten theories, Nucl. Phys. B 411 (1994) 509 [hep-th/9302083] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. A.A. Tseytlin, On field redefinitions and exact solutions in string theory, Phys. Lett. B 317 (1993) 559 [hep-th/9308042] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. B. de Wit, M.T. Grisaru and P. van Nieuwenhuizen, The WZNW model at two loops, Nucl. Phys. B 408 (1993) 299 [hep-th/9307027] [SPIRES].

    Article  ADS  Google Scholar 

  47. A.M. Polyakov, Gauge fields and strings, Contemporary Concepts in Physics. Vol. 3, Harwood Academic Publishers, Chur Switzerland (1987) [SPIRES].

    Google Scholar 

  48. A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys. B 399 (1993) 691 [hep-th/9210015] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. A.A. Tseytlin, Duality and dilaton, Mod. Phys. Lett. A 6 (1991) 1721 [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hoare.

Additional information

ArXiv ePrint: 1008.4914

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoare, B., Tseytlin, A.A. On the perturbative S-matrix of generalized sine-Gordon models. J. High Energ. Phys. 2010, 111 (2010). https://doi.org/10.1007/JHEP11(2010)111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)111

Keywords