Abstract
The IR dynamics of effective holographic theories capturing the interplay between charge density and the leading relevant scalar operator at strong coupling are analyzed. Such theories are parameterized by two real exponents (γ, δ) that control the IR dynamics. By studying the thermodynamics, spectra and conductivities of several classes of charged dilatonic black hole solutions that include the charge density back reaction fully, the landscape of such theories in view of condensed matter applications is characterized. Several regions of the (γ, δ) plane can be excluded as the extremal solutions have unacceptable singularities. The classical solutions have generically zero entropy at zero temperature, except when γ = δ where the entropy at extremality is finite. The general scaling of DC resistivity with temperature at low temperature, and AC conductivity at low frequency and temperature across the whole (γ, δ) plane, is found. There is a codimension-one region where the DC resistivity is linear in the temperature. For massive carriers, it is shown that when the scalar operator is not the dilaton, the DC resistivity scales as the heat capacity (and entropy) for planar (3d) systems. Regions are identified where the theory at finite density is a Mott-like insulator at T = 0. We also find that at low enough temperatures the entropy due to the charge carriers is generically larger than at zero charge density.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. Sachdev and M. Mueller, Quantum criticality and black holes, arXiv:0810.3005 [SPIRES].
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].
C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].
S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].
G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].
A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [SPIRES].
A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [SPIRES].
M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].
H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].
S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].
S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].
P. Breitenlohner and D.Z. Freedman, Positive energy in Anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett. B 115 (1982) 197 [SPIRES].
P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys. 144 (1982) 249 [SPIRES].
U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].
U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].
S.S. Gubser, A. Nellore, S.S. Pufu and F.D. Rocha, Thermodynamics and bulk viscosity of approximate black hole duals to finite temperature quantum chromodynamics, Phys. Rev. Lett. 101 (2008) 131601 [arXiv:0804.1950] [SPIRES].
U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [SPIRES].
U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [SPIRES].
A. Karch and A. O’Bannon, Metallic AdS/CFT, JHEP 09 (2007) 024 [arXiv:0705.3870] [SPIRES].
S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].
K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [SPIRES].
E. D’Hoker and P. Kraus, Charged magnetic brane solutions in AdS 5 and the fate of the third law of thermodynamics, JHEP 03 (2010) 095 [arXiv:0911.4518] [SPIRES].
J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].
D. Bak and S.-J. Rey, Composite fermion metals from dyon black holes and S-Duality, JHEP 09 (2010) 032 [arXiv:0912.0939] [SPIRES].
S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].
M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [SPIRES].
M. Edalati, J.I. Jottar and R.G. Leigh, Shear modes, criticality and extremal black holes, JHEP 04 (2010) 075 [arXiv:1001.0779] [SPIRES].
F. Aprile, S. Franco, D. Rodriguez-Gomez and J.G. Russo, Phenomenological models of holographic superconductors and Hall currents, JHEP 05 (2010) 102 [arXiv:1003.4487] [SPIRES].
C.-M. Chen and D.-W. Pang, Holography of charged dilaton black holes in general dimensions, JHEP 06 (2010) 093 [arXiv:1003.5064] [SPIRES].
E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Black hole thermodynamics and heavy fermion metals, JHEP 08 (2010) 027 [arXiv:1003.5361] [SPIRES].
D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On holographic superconductors with DC current, JHEP 07 (2010) 060 [arXiv:1003.5661] [SPIRES].
S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].
I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [SPIRES].
C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].
A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [SPIRES].
S. Fernando and D. Krug, Charged black hole solutions in Einstein-Born-Infeld gravity with a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [SPIRES].
R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces, Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [SPIRES].
R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [SPIRES].
I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sen’s tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [SPIRES].
C. Charmousis, R. Emparan and R. Gregory, Self-gravity of brane worlds: a new hierarchy twist, JHEP 05 (2001) 026 [hep-th/0101198] [SPIRES].
Y. Kinar, E. Schreiber and J. Sonnenschein, Q anti-Q potential from strings in curved spacetime: Classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [SPIRES].
P. Romatschke and D.T. Son, Spectral sum rules for the quark-gluon plasma, Phys. Rev. D 80 (2009) 065021 [arXiv:0903.3946] [SPIRES].
U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity, arXiv:1007. 0500 [SPIRES].
U. Gürsoy, Gravity/ spin-model correspondence and holographic superfluids, arXiv:1007.4854 [SPIRES].
C. Charmousis, Dilaton spacetimes with a Liouville potential, Class. Quant. Grav. 19 (2002) 83 [hep-th/0107126] [SPIRES].
E. Kiritsis and F. Nitti, On massless 4D gravitons from 5D asymptotically AdS space-times, Nucl. Phys. B 772 (2007) 67 [hep-th/0611344] [SPIRES].
J. Alanen, K. Kajantie and K. Tuominen, Thermodynamics of quasi conformal theories from gauge/gravity duality, Phys. Rev. D 82 (2010) 055024 [arXiv:1003.5499] [SPIRES].
R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].
M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [SPIRES].
D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [SPIRES].
S. Monni and M. Cadoni, Dilatonic black holes in a S-duality model, Nucl. Phys. B 466 (1996) 101 [hep-th/9511067] [SPIRES].
G. Clement, D. Gal’tsov and C. Leygnac, Linear dilaton black holes, Phys. Rev. D 67 (2003) 024012 [hep-th/0208225] [SPIRES].
G. Clement and C. Leygnac, Non-asymptotically flat, non-AdS dilaton black holes, Phys. Rev. D 70 (2004) 084018 [gr-qc/0405034] [SPIRES].
G. Clement, D. Gal’tsov and C. Leygnac, Black branes on the linear dilaton background, Phys. Rev. D 71 (2005) 084014 [hep-th/0412321] [SPIRES].
K.C.K. Chan, J .H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [SPIRES].
S.J. Poletti and D.L. Wiltshire, The Global properties of static spherically symmetric charged dilaton space-times with a Liouville potential, Phys. Rev. D 50 (1994) 7260 [gr-qc/9407021] [SPIRES].
S.J. Poletti, J. Twamley and D.L. Wiltshire, Charged dilaton black holes with a cosmological constant, Phys. Rev. D 51 (1995) 5720 [hep-th/9412076] [SPIRES].
C.J . Gao and S.N. Zhang, Dilaton black holes in de Sitter or Anti-de Sitter universe, Phys. Rev. D 70 (2004) 124019 [hep-th/0411104] [SPIRES].
S. Mignemi, Exact solutions of dilaton gravity with (Anti)-de Sitter asymptotics, arXiv:0907.0422 [SPIRES].
A. Sheykhi, M.H. Dehghani and S.H. Hendi, Thermodynamic instability of charged dilaton black holes in AdS spaces, Phys. Rev. D 81 (2010) 084040 [arXiv:0912.4199] [SPIRES].
G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].
M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotically Anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev. D 70 (2004) 044034 [hep-th/0404236] [SPIRES].
M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of Anti-de Sitter gravity coupled to scalar fields, Annals Phys. 322 (2007) 824 [hep-th/0603185] [SPIRES].
J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A6 (1991) 2353 [SPIRES].
C.F.E. Holzhey and F. Wilczek, Black holes as elementary particles, Nucl. Phys. B 380 (1992) 447 [hep-th/9202014] [SPIRES].
E. Perlmutter, Domain wall holography for finite temperature scaling solutions, arXiv:1006.2124 [SPIRES].
S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].
T. Regge and C. Teitelboim, Role of surface integrals in the hamiltonian formulation of general relativity, Ann. Phys. 88 (1974) 286 [SPIRES].
G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [SPIRES].
S.W. Hawking and S.F. Ross, Duality between electric and magnetic black holes, Phys. Rev. D 52 (1995) 5865 [hep-th/9504019] [SPIRES].
M. Henneaux and C. Teitelboim, Asymptotically Anti-de Sitter spaces, Commun. Math. Phys. 98 (1985) 391 [SPIRES].
C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [SPIRES].
A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint:1005.4690
On leave of absence from Laboratoire APC, Université Paris-Diderot Paris 7, CNRS UMR 7164, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Charmousis, C., Goutéraux, B., Soo Kim, B. et al. Effective holographic theories for low-temperature condensed matter systems. J. High Energ. Phys. 2010, 151 (2010). https://doi.org/10.1007/JHEP11(2010)151
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2010)151