Abstract
The standard method to calculate non-perturbatively the evolution of the running coupling of a SU(N ) gauge theory is based on the Schrödinger functional (SF). In this paper we construct a family of boundary fields for general values of N which enter the standard definition of the SF coupling. We provide spatial boundary conditions for fermions in several representations which reduce the condition number of the squared Dirac operator. In addition, we calculate the \( \mathcal{O}(a) \) improvement coefficients for N >3 needed to remove boundary cutoff effects from the gauge action. After this, residual cutoff effects on the step scaling function are shown to be very small even when considering non-fundamental representations. We also calculate the ratio of Λ parameters between the \( \overline{\mathrm{MS}} \) and SF schemes.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: A Renormalizable probe for nonAbelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [INSPIRE].
M. Lüscher, R. Sommer, U. Wolff and P. Weisz, Computation of the running coupling in the SU(2) Yang-Mills theory, Nucl. Phys. B 389 (1993) 247 [hep-lat/9207010] [INSPIRE].
M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A Precise determination of the running coupling in the SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005] [INSPIRE].
ALPHA collaboration, M. Della Morte et al., Computation of the strong coupling in QCD with two dynamical flavors, Nucl. Phys. B 713 (2005) 378 [hep-lat/0411025] [INSPIRE].
B. Lucini and G. Moraitis, The Running of the coupling in SU(N ) pure gauge theories, Phys. Lett. B 668 (2008) 226 [arXiv:0805.2913] [INSPIRE].
T. Appelquist, G.T. Fleming and E.T. Neil, Lattice study of the conformal window in QCD-like theories, Phys. Rev. Lett. 100 (2008) 171607 [Erratum ibid. 102 (2009) 149902] [arXiv:0712.0609] [INSPIRE].
A.J. Hietanen, K. Rummukainen and K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions, Phys. Rev. D 80 (2009) 094504 [arXiv:0904.0864] [INSPIRE].
T. Karavirta, J. Rantaharju, K. Rummukainen and K. Tuominen, Determining the conformal window: SU(2) gauge theory with N f =4, 6 and 10 fermion flavours, JHEP 05 (2012) 003 [arXiv:1111.4104] [INSPIRE].
F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with two adjoint fermions, Phys. Rev. D 81 (2010) 014505 [arXiv:0910.4535] [INSPIRE].
F. Bursa, L. Del Debbio, L. Keegan, C. Pica and T. Pickup, Mass anomalous dimension in SU(2) with six fundamental fermions, Phys. Lett. B 696 (2011) 374 [arXiv:1007.3067] [INSPIRE].
T. DeGrand, Y. Shamir and B. Svetitsky, Running coupling and mass anomalous dimension of SU(3) gauge theory with two flavors of symmetric-representation fermions, Phys. Rev. D 82 (2010) 054503 [arXiv:1006.0707] [INSPIRE].
T. DeGrand, Y. Shamir and B. Svetitsky, SU(4) lattice gauge theory with decuplet fermions: Schrödinger functional analysis, Phys. Rev. D 85 (2012) 074506 [arXiv:1202.2675] [INSPIRE].
M. Hayakawa, K.-I. Ishikawa, Y. Osaki, S. Takeda, S. Uno and N. Yamada, Running coupling constant of ten-flavor QCD with the Schrödinger functional method, Phys. Rev. D 83 (2011) 074509 [arXiv:1011.2577] [INSPIRE].
U.M. Heller, The Schrödinger functional running coupling with staggered fermions and its application to many flavor QCD, Nucl. Phys. Proc. Suppl. 63 (1998) 248 [hep-lat/9709159] [INSPIRE].
S. Sint and R. Sommer, The Running coupling from the QCD Schrödinger functional: A One loop analysis, Nucl. Phys. B 465 (1996) 71 [hep-lat/9508012] [INSPIRE].
M. Lüscher and P. Weisz, O(a) improvement of the axial current in lattice QCD to one loop order of perturbation theory, Nucl. Phys. B 479 (1996) 429 [hep-lat/9606016] [INSPIRE].
M. Lüscher, S. Sint, R. Sommer and P. Weisz, Chiral symmetry and O(a) improvement in lattice QCD, Nucl. Phys. B 478 (1996) 365 [hep-lat/9605038] [INSPIRE].
B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].
B. Lucini and M. Panero, SU(N ) gauge theories at large-N , Phys. Rept. 526 (2013) 93 [arXiv:1210.4997] [INSPIRE].
R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].
M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [arXiv:1006.4518] [INSPIRE].
M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].
A. Ramos, The gradient flow in a twisted box, PoS(Lattice 2013)053 [arXiv:1308.4558] [INSPIRE].
P. Fritzsch and A. Ramos, The gradient flow coupling in the Schrödinger Functional, JHEP 10 (2013) 008 [arXiv:1301.4388] [INSPIRE].
A. Ramos, plenary talk in Lattice 2014.
J. Rantaharju, The Gradient Flow Coupling in Minimal Walking Technicolor, PoS(Lattice 2013)084 [arXiv:1311.3719] [INSPIRE].
R. Narayanan and H. Neuberger, Large-N reduction in continuum, Phys. Rev. Lett. 91 (2003) 081601 [hep-lat/0303023] [INSPIRE].
F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [INSPIRE].
T. Karavirta, A. Hietanen and P. Vilaseca, Schrödinger functional boundary conditions and improvement of the SU(N ) pure gauge action for N >3, PoS(LATTICE 2013)328 [arXiv:1311.0405] [INSPIRE].
S. Sint, One loop renormalization of the QCD Schrödinger functional, Nucl. Phys. B 451 (1995) 416 [hep-lat/9504005] [INSPIRE].
R. Wohlert, Improved Continuum Limit Lattice Action For Quarks, DESY87/069 [INSPIRE].
T. Karavirta, A. Mykkanen, J. Rantaharju, K. Rummukainen and K. Tuominen, Nonperturbative improvement of SU(2) lattice gauge theory with adjoint or fundamental flavors, JHEP 06 (2011) 061 [arXiv:1101.0154] [INSPIRE].
M. Lüscher, S. Sint, R. Sommer, P. Weisz and U. Wolff, Nonperturbative O(a) improvement of lattice QCD, Nucl. Phys. B 491 (1997) 323 [hep-lat/9609035] [INSPIRE].
S. Sint and P. Vilaseca, Lattice artefacts in the Schrödinger Functional coupling for strongly interacting theories, PoS(LATTICE 2012)031 [arXiv:1211.0411] [INSPIRE].
T. Karavirta, K. Tuominen and K. Rummukainen, Perturbative Improvement of the Schrödinger Functional for Lattice Strong Dynamics, Phys. Rev. D 85 (2012) 054506 [arXiv:1201.1883] [INSPIRE].
S. Sint and P. Vilaseca, Perturbative lattice artefacts in the SF coupling for technicolor-inspired models, PoS(LATTICE 2011)091 [arXiv:1111.2227] [INSPIRE].
Alpha collaboration, A. Bode, U. Wolff and P. Weisz, Two loop computation of the Schrödinger functional in pure SU(3) lattice gauge theory, Nucl. Phys. B 540 (1999) 491 [hep-lat/9809175] [INSPIRE].
ALPHA collaboration, A. Bode, P. Weisz and U. Wolff, Two loop computation of the Schrödinger functional in lattice QCD, Nucl. Phys. B 576 (2000) 517 [Erratum ibid. B 600 (2001) 453] [Erratum ibid. B 608 (2001) 481] [hep-lat/9911018] [INSPIRE].
M. Lüscher and P. Weisz, Efficient Numerical Techniques for Perturbative Lattice Gauge Theory Computations, Nucl. Phys. B 266 (1986) 309 [INSPIRE].
L. Del Debbio, M.T. Frandsen, H. Panagopoulos and F. Sannino, Higher representations on the lattice: Perturbative studies, JHEP 06 (2008) 007 [arXiv:0802.0891] [INSPIRE].
P. Weisz, On the Connection Between the Λ Parameters of Euclidean Lattice and Continuum QCD, Phys. Lett. B 100 (1981) 331 [INSPIRE].
C. Christou, A. Feo, H. Panagopoulos and E. Vicari, The Three loop β-function of SU(N ) lattice gauge theories with Wilson fermions, Nucl. Phys. B 525 (1998) 387 [Erratum ibid. B 608 (2001) 479] [hep-lat/9801007] [INSPIRE].
S. Capitani and G. Rossi, Deep inelastic scattering in improved lattice QCD. 1. The First moment of structure functions, Nucl. Phys. B 433 (1995) 351 [hep-lat/9401014] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1408.7047
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hietanen, A., Karavirta, T. & Vilaseca, P. Schrödinger functional boundary conditions and improvement for N >3. J. High Energ. Phys. 2014, 74 (2014). https://doi.org/10.1007/JHEP11(2014)074
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2014)074