Abstract
We determine the next-to-leading order renormalization group equations for the Two-Higgs-Doublet model with a softly broken Z 2 symmetry and CP conservation in the scalar potential. We use them to identify the parameter regions which are stable up to the Planck scale and find that in this case the quartic couplings of the Higgs potential cannot be larger than 1 in magnitude and that the absolute values of the S-matrix eigenvalues cannot exceed 2.5 at the electroweak symmetry breaking scale. Interpreting the 125 GeV resonance as the light CP -even Higgs eigenstate, we combine stability constraints, electroweak precision and flavour observables with the latest ATLAS and CMS data on Higgs signal strengths and heavy Higgs searches in global parameter fits to all four types of Z 2 symmetry. We quantify the maximal deviations from the alignment limit and find that in type II and Y the mass of the heavy CP -even (CP -odd) scalar cannot be smaller than 340 GeV (360 GeV). Also, we pinpoint the physical parameter regions compatible with a stable scalar potential up to the Planck scale. Motivated by the question how natural a Higgs mass of 125 GeV can be in the context of a Two-Higgs-Doublet model, we also address the hierarchy problem and find that the Two-Higgs-Doublet model does not offer a perturbative solution to it beyond 5 TeV.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2013) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].
J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
ATLAS and CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].
H.S. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].
C.-Y. Chen and S. Dawson, Exploring Two Higgs Doublet Models Through Higgs Production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].
C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].
B. Grinstein and P. Uttayarat, Carving Out Parameter Space in Type-II Two Higgs Doublets Model, JHEP 06 (2013) 094 [Erratum ibid. 1309 (2013) 110] [arXiv:1304.0028] [INSPIRE].
A. Barroso, P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHC — the story so far, arXiv:1304.5225 [INSPIRE].
B. Coleppa, F. Kling and S. Su, Constraining Type II 2HDM in Light of LHC Higgs Searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].
O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].
G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].
S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park and J. Song, Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 09 (2014) 101 [arXiv:1310.3374] [INSPIRE].
K. Cheung, J.S. Lee and P.-Y. Tseng, Higgcision in the Two-Higgs Doublet Models, JHEP 01 (2014) 085 [arXiv:1310.3937] [INSPIRE].
A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].
L. Wang and X.-F. Han, Status of the aligned two-Higgs-doublet model confronted with the Higgs data, JHEP 04 (2014) 128 [arXiv:1312.4759] [INSPIRE].
J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs Pair Production and Heavy Higgs boson Searches in the Two-Higgs-Doublet Model of Type II, Phys. Rev. D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE].
S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257] [INSPIRE].
B. Dumont, J.F. Gunion, Y. Jiang and S. Kraml, Constraints on and future prospects for Two-Higgs-Doublet Models in light of the LHC Higgs signal, Phys. Rev. D 90 (2014) 035021 [arXiv:1405.3584] [INSPIRE].
S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting nonminimal Higgs sectors, Phys. Rev. D 90 (2014) 075001 [arXiv:1406.3294] [INSPIRE].
P.M. Ferreira, R. Guedes, J.F. Gunion, H.E. Haber, M.O.P. Sampaio and R. Santos, The CP-conserving 2HDM after the 8 TeV run, proceedings of 22nd International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2014), [arXiv:1407.4396] [INSPIRE].
A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].
B. Dumont, J.F. Gunion, Y. Jiang and S. Kraml, Addendum to “Constraints on and future prospects for Two-Higgs-Doublet Models in light of the LHC Higgs signal”, arXiv:1409.4088 [INSPIRE].
J. Bernon, J.F. Gunion, Y. Jiang and S. Kraml, Light Higgs bosons in Two-Higgs-Doublet Models, Phys. Rev. D 91 (2015) 075019 [arXiv:1412.3385] [INSPIRE].
C.-Y. Chen, S. Dawson and Y. Zhang, Complementarity of LHC and EDMs for Exploring Higgs CP-violation, JHEP 06 (2015) 056 [arXiv:1503.01114] [INSPIRE].
C.-Y. Chen, S. Dawson and M. Sher, Heavy Higgs Searches and Constraints on Two Higgs Doublet Models, Phys. Rev. D 88 (2013) 015018 [Erratum ibid. D 88 (2013) 039901] [arXiv:1305.1624] [INSPIRE].
N. Craig, J. Galloway and S. Thomas, Searching for Signs of the Second Higgs Doublet, arXiv:1305.2424 [INSPIRE].
V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and Muon Collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].
S. Kanemura, H. Yokoya and Y.-J. Zheng, Complementarity in direct searches for additional Higgs bosons at the LHC and the International Linear Collider, Nucl. Phys. B 886 (2014) 524 [arXiv:1404.5835] [INSPIRE].
L. Wang and X.-F. Han, Study of the heavy CP-even Higgs with mass 125 GeV in two-Higgs-doublet models at the LHC and ILC, JHEP 11 (2014) 085 [arXiv:1404.7437] [INSPIRE].
V. Barger, L.L. Everett, C.B. Jackson, A.D. Peterson and G. Shaughnessy, Measuring the two-Higgs doublet model scalar potential at LHC14, Phys. Rev. D 90 (2014) 095006 [arXiv:1408.2525] [INSPIRE].
M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs Effective Theory: Extended Higgs Sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].
S. Kanemura, M. Kikuchi and K. Yagyu, Fingerprinting the extended Higgs sector using one-loop corrected Higgs boson couplings and future precision measurements, Nucl. Phys. B 896 (2015) 80 [arXiv:1502.07716] [INSPIRE].
N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The Hunt for the Rest of the Higgs Bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].
J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang and S. Kraml, Scrutinizing the alignment limit in two-Higgs-doublet models: m h = 125 GeV, Phys. Rev. D 92 (2015) 075004 [arXiv:1507.00933] [INSPIRE].
U. Nierste and K. Riesselmann, Higgs sector renormalization group in the MS and OMS scheme: The breakdown of perturbation theory for a heavy Higgs, Phys. Rev. D 53 (1996) 6638 [hep-ph/9511407] [INSPIRE].
C.T. Hill, C.N. Leung and S. Rao, Renormalization Group Fixed Points and the Higgs Boson Spectrum, Nucl. Phys. B 262 (1985) 517 [INSPIRE].
A.A. Andrianov, R. Rodenberg and N.V. Romanenko, Fine tuning in one Higgs and two Higgs standard model, Nuovo Cim. A 108 (1995) 577 [hep-ph/9408301] [INSPIRE].
J. Bijnens, J. Lu and J. Rathsman, Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings, JHEP 05 (2012) 118 [arXiv:1111.5760] [INSPIRE].
S.R. Juarez W., D. Morales C. and P. Kielanowski, Outlook on the Higgs particles, masses and physical bounds in the Two Higgs-Doublet Model, arXiv:1201.1876 [INSPIRE].
N. Chakrabarty, U.K. Dey and B. Mukhopadhyaya, High-scale validity of a two-Higgs doublet scenario: a study including LHC data, JHEP 12 (2014) 166 [arXiv:1407.2145] [INSPIRE].
N. Chakrabarty, D.K. Ghosh, B. Mukhopadhyaya and I. Saha, Dark matter, neutrino masses and high scale validity of an inert Higgs doublet model, Phys. Rev. D 92 (2015) 015002 [arXiv:1501.03700] [INSPIRE].
P. Ferreira, H.E. Haber and E. Santos, Preserving the validity of the Two-Higgs Doublet Model up to the Planck scale, Phys. Rev. D 92 (2015) 033003 [arXiv:1505.04001] [INSPIRE].
D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev. D 91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].
M.J.G. Veltman, The Infrared-Ultraviolet Connection, Acta Phys. Polon. B 12 (1981) 437 [INSPIRE].
C. Newton and T.T. Wu, Mass relations in the two Higgs doublet model from the absence of quadratic divergences, Z. Phys. C 62 (1994) 253 [INSPIRE].
E. Ma, Cancelling quadratic divergences in a class of two Higgs doublet models, Int. J. Mod. Phys. A 16 (2001) 3099 [hep-ph/0101355] [INSPIRE].
R. Jora, S. Nasri and J. Schechter, Naturalness in a simple two Higgs doublet model, Int. J. Mod. Phys. A 28 (2013) 1350036 [arXiv:1302.6344] [INSPIRE].
A. Biswas and A. Lahiri, Masses of physical scalars in two Higgs doublet models, Phys. Rev. D 91 (2015) 115012 [arXiv:1412.6187] [INSPIRE].
B. Grzadkowski and P. Osland, Tempered Two-Higgs-Doublet Model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].
B. Grzadkowski and P. Osland, Natural Two-Higgs-Doublet Model, Fortsch. Phys. 59 (2011) 1041 [arXiv:1012.0703] [INSPIRE].
B. Grzadkowski and P. Osland, Tuned Two-Higgs-Doublet Model, J. Phys. Conf. Ser. 259 (2010) 012055 [arXiv:1012.2201] [INSPIRE].
I. Chakraborty and A. Kundu, Two-Higgs doublet models confront the naturalness problem, Phys. Rev. D 90 (2014) 115017 [arXiv:1404.3038] [INSPIRE].
A. Delgado, G. Nardini and M. Quirós, A Light Supersymmetric Higgs Sector Hidden by a Standard Model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].
M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].
N.G. Deshpande and E. Ma, Pattern of Symmetry Breaking with Two Higgs Doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].
I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
A. Barroso, P.M. Ferreira, I.P. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].
M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].
ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, ATLAS-CONF-2015-007 (2015).
ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into bb in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 349 [arXiv:1503.05066] [INSPIRE].
CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
CMS collaboration, Search for a Standard Model Higgs Boson Produced in Association with a Top-Quark Pair and Decaying to Bottom Quarks Using a Matrix Element Method, Eur. Phys. J. C 75 (2015) 251 [arXiv:1502.02485] [INSPIRE].
ATLAS collaboration, Search For Higgs Boson Pair Production in the \( \gamma \gamma b\overline{b} \) Final State using pp Collision Data at \( \sqrt{s}=8 \) TeV from the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 081802 [arXiv:1406.5053] [INSPIRE].
ATLAS collaboration, Search for a high-mass Higgs boson in the H → W W → lνlν decay channel with the ATLAS detector using 21 fb −1 of proton-proton collision data, ATLAS-CONF-2013-067 (2013).
ATLAS collaboration, Search for Scalar Diphoton Resonances in the Mass Range 65 − 600 GeV with the ATLAS Detector in pp Collision Data at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 113 (2014) 171801 [arXiv:1407.6583] [INSPIRE].
ATLAS collaboration, Search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-049 (2014).
ATLAS collaboration, Search for a CP-odd Higgs boson decaying to Zh in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 744 (2015) 163 [arXiv:1502.04478] [INSPIRE].
CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
CMS collaboration, Search for a Higgs Boson in the Mass Range from 145 to 1000 GeV Decaying to a Pair of W or Z Bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
CMS collaboration, Search for resonant HH production in 2gamma+2b channel, CMS-PAS-HIG-13-032 (2014).
CMS collaboration, Search for a pseudoscalar boson A decaying into a Z and an h boson in the llbb final state, CMS-PAS-HIG-14-011 (2014).
CMS collaboration, Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 560 [arXiv:1503.04114] [INSPIRE].
ATLAS collaboration, Search for charged Higgs bosons decaying via H ± → τ ± ν in fully hadronic final states using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 03 (2015) 088 [arXiv:1412.6663] [INSPIRE].
CMS collaboration, Search for a heavy charged Higgs boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the CMS detector, CMS-PAS-HIG-13-026 (2014).
CMS collaboration, Search for charged Higgs bosons with the H+ to tau nu decay channel in the fully hadronic final state at \( \sqrt{s}=8 \) TeV, CMS-PAS-HIG-14-020 (2014).
F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [arXiv:1506.08614] [INSPIRE].
Belle collaboration, M. Huschle et al., Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}\overline{\nu}\tau \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτ ν, B → D ∗ τ ν and B → τ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].
O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].
F. Lyonnet, I. Schienbein, F. Staub and A. Wingerter, PyR@TE: Renormalization Group Equations for General Gauge Theories, Comput. Phys. Commun. 185 (2014) 1130 [arXiv:1309.7030] [INSPIRE].
D. Yu. Bardin, M.S. Bilenky, T. Riemann, M. Sachwitz and H. Vogt, Dizet: A Program Package for the Calculation of Electroweak One Loop Corrections for the Process e ++e − → f ++f − Around the Z 0 Peak, Comput.Phys.Commun. 59 (1990) 303 [INSPIRE].
D.Y. Bardin et al., ZFITTER v.6.21: A semianalytical program for fermion pair production in e + e − annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].
A.B. Arbuzov et al., ZFITTER: A semi-analytical program for fermion pair production in e + e − annihilation, from version 6.21 to version 6.42, Comput. Phys. Commun. 174 (2006) 728 [hep-ph/0507146] [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006) 236 [hep-ph/0601248] [INSPIRE].
A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
J.M. Butterworth et al., The Tools And Monte Carlo Working Group Summary Report from the Les Houches 2009 Workshop on TeV Colliders, arXiv:1003.1643 [INSPIRE].
A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [INSPIRE].
S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, Annals Math. Statist. 9 (1938) 60 [INSPIRE].
K. Inoue, A. Kakuto and Y. Nakano, Perturbation Constraint on Particle Masses in the Weinberg-Salam Model With Two Massless Higgs Doublets, Prog. Theor. Phys. 63 (1980) 234 [INSPIRE].
H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].
W. Grimus and L. Lavoura, Renormalization of the neutrino mass operators in the multi-Higgs-doublet standard model, Eur. Phys. J. C 39 (2005) 219 [hep-ph/0409231] [INSPIRE].
C. Cheung, M. Papucci and K.M. Zurek, Higgs and Dark Matter Hints of an Oasis in the Desert, JHEP 07 (2012) 105 [arXiv:1203.5106] [INSPIRE].
P.S.B. Dev and A. Pilaftsis, Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment, JHEP 12 (2014) 024 [arXiv:1408.3405] [INSPIRE].
R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended Standard Model, Phys. Rev. D 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].
H. Huffel and G. Pocsik, Unitarity Bounds on Higgs Boson Masses in the Weinberg-Salam Model With Two Higgs Doublets, Z. Phys. C 8 (1981) 13 [INSPIRE].
J. Maalampi, J. Sirkka and I. Vilja, Tree level unitarity and triviality bounds for two Higgs models, Phys. Lett. B 265 (1991) 371 [INSPIRE].
S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].
A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
O. Eberhardt, Fitting the Two-Higgs-Doublet model of type-II, arXiv:1405.3181 [INSPIRE].
C.F. Kolda and H. Murayama, The Higgs mass and new physics scales in the minimal standard model, JHEP 07 (2000) 035 [hep-ph/0003170] [INSPIRE].
M.B. Einhorn and D.R.T. Jones, The effective potential and quadratic divergences, Phys. Rev. D 46 (1992) 5206 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1503.08216
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Chowdhury, D., Eberhardt, O. Global fits of the two-loop renormalized Two-Higgs-Doublet model with soft Z 2 breaking. J. High Energ. Phys. 2015, 52 (2015). https://doi.org/10.1007/JHEP11(2015)052
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2015)052