Abstract
We point out that a model with scalar fields with a large nonminimal coupling to the Ricci scalar, such as Higgs inflation, can be regarded as a nonlinear sigma model (NLSM). With the inclusion of not only the scalar fields but also the conformal mode of the metric, our definition of the target space of the NLSM is invariant under the frame transformation. We show that the σ-meson that linearizes this NLSM to be a linear sigma model (LSM) corresponds to the scalaron, the degree of freedom associated to the R2 term in the Jordan frame. We demonstrate that quantum corrections inevitably induce this σ-meson in the large-N limit, thus providing a frame independent picture for the emergence of the scalaron. The resultant LSM only involves renormalizable interactions and hence its perturbative unitarity holds up to the Planck scale unless it hits a Landau pole, which is in agreement with the renormalizability of quadratic gravity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
T. Futamase and K.-i. Maeda, Chaotic Inflationary Scenario in Models Having Nonminimal Coupling With Curvature, Phys. Rev. D 39 (1989) 399 [INSPIRE].
J.L. Cervantes-Cota and H. Dehnen, Induced gravity inflation in the standard model of particle physics, Nucl. Phys. B 442 (1995) 391 [astro-ph/9505069] [INSPIRE].
F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
Y. Hamada, H. Kawai, K.-y. Oda and S.C. Park, Higgs Inflation is Stil l Alive after the Results from BICEP2, Phys. Rev. Lett. 112 (2014) 241301 [arXiv:1403.5043] [INSPIRE].
F. Bezrukov and M. Shaposhnikov, Higgs inflation at the critical point, Phys. Lett. B 734 (2014) 249 [arXiv:1403.6078] [INSPIRE].
J.F. Donoghue, Introduction to the effective field theory description of gravity, in Advanced School on Effective Theories, (1995) [gr-qc/9512024] [INSPIRE].
A. Salvio and A. Mazumdar, Classical and Quantum Initial Conditions for Higgs Inflation, Phys. Lett. B 750 (2015) 194 [arXiv:1506.07520] [INSPIRE].
X. Calmet and I. Kuntz, Higgs Starobinsky Inflation, Eur. Phys. J. C 76 (2016) 289 [arXiv:1605.02236] [INSPIRE].
Y. Ema, Higgs Scalaron Mixed Inflation, Phys. Lett. B 770 (2017) 403 [arXiv:1701.07665] [INSPIRE].
D.M. Ghilencea, Two-loop corrections to Starobinsky-Higgs inflation, Phys. Rev. D 98 (2018) 103524 [arXiv:1807.06900] [INSPIRE].
Y. Ema, Dynamical Emergence of Scalaron in Higgs Inflation, JCAP 09 (2019) 027 [arXiv:1907.00993] [INSPIRE].
A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].
J.D. Barrow and A.C. Ottewill, The Stability of General Relativistic Cosmological Theory, J. Phys. A 16 (1983) 2757 [INSPIRE].
B. Whitt, Fourth Order Gravity as General Relativity Plus Matter, Phys. Lett. B 145 (1984) 176 [INSPIRE].
J.D. Barrow and S. Cotsakis, Inflation and the Conformal Structure of Higher Order Gravity Theories, Phys. Lett. B 214 (1988) 515 [INSPIRE].
E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotical ly free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].
E. Elizalde and S.D. Odintsov, Renormalization group improved effective potential for gauge theories in curved space-time, Phys. Lett. B 303 (1993) 240 [hep-th/9302074] [INSPIRE].
E. Elizalde and S.D. Odintsov, Renormalization group improved effective Lagrangian for interacting theories in curved space-time, Phys. Lett. B 321 (1994) 199 [hep-th/9311087] [INSPIRE].
A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].
A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].
A. Salvio, Quadratic Gravity, Front. in Phys. 6 (2018) 77 [arXiv:1804.09944] [INSPIRE].
A. Codello and R.K. Jain, On the covariant formalism of the effective field theory of gravity and leading order corrections, Class. Quant. Grav. 33 (2016) 225006 [arXiv:1507.06308] [INSPIRE].
R. Myrzakulov, S. Odintsov and L. Sebastiani, Inflationary universe from higher derivative quantum gravity coupled with scalar electrodynamics, Nucl. Phys. B 907 (2016) 646 [arXiv:1604.06088] [INSPIRE].
T. Markkanen, S. Nurmi, A. Rajantie and S. Stopyra, The 1-loop effective potential for the Standard Model in curved spacetime, JHEP 06 (2018) 040 [arXiv:1804.02020] [INSPIRE].
J. Kubo, M. Lindner, K. Schmitz and M. Yamada, Planck mass and inflation as consequences of dynamical ly broken scale invariance, Phys. Rev. D 100 (2019) 015037 [arXiv:1811.05950] [INSPIRE].
C.P. Burgess, H.M. Lee and M. Trott, Comment on Higgs Inflation and Naturalness, JHEP 07 (2010) 007 [arXiv:1002.2730] [INSPIRE].
M.P. Hertzberg, On Inflation with Non-minimal Coupling, JHEP 11 (2010) 023 [arXiv:1002.2995] [INSPIRE].
C.P. Burgess, S.P. Patil and M. Trott, On the Predictiveness of Single-Field Inflationary Models, JHEP 06 (2014) 010 [arXiv:1402.1476] [INSPIRE].
J. Ren, Z.-Z. Xianyu and H.-J. He, Higgs Gravitational Interaction, Weak Boson Scattering, and Higgs Inflation in Jordan and Einstein Frames, JCAP 06 (2014) 032 [arXiv:1404.4627] [INSPIRE].
S. Weinberg, Problems in Gauge Field Theories, in High energy physics. Proceedings, 17th International Conference, ICHEP 1974, London, England, 1–10 July 1974, pp. III.59–65 (1974) [INSPIRE].
S. Deser, The State of Quantum Gravity, Conf. Proc. C 750926 (1975) 229 [INSPIRE].
K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
A.O. Bärvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov and C.F. Steinwachs, Renormalization of gauge theories in the background-field approach, JHEP 07 (2018) 035 [arXiv:1705.03480] [INSPIRE].
W.A. Bardeen, B.W. Lee and R.E. Shrock, Phase Transition in the Nonlinear σ Model in 2 + 𝜖 Dimensional Continuum, Phys. Rev. D 14 (1976) 985 [INSPIRE].
E. Brézin, J. Zinn-Justin and J.C. Le Guillou, Renormalization of the Nonlinear σ-model in 2 + 𝜖 Dimension, Phys. Rev. D 14 (1976) 2615 [INSPIRE].
A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales and M.T. Urdiales, Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].
A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].
A. D’Adda, M. Lüscher and P. Di Vecchia, A 1/n Expandable Series of Nonlinear σ-models with Instantons, Nucl. Phys. B 146 (1978) 63 [INSPIRE].
A. D’Adda, P. Di Vecchia and M. Lüscher, Confinement and Chiral Symmetry Breaking in C Pn−1 Models with Quarks, Nucl. Phys. B 152 (1979) 125 [INSPIRE].
E. Witten, Instantons, the Quark Model, and the 1/n Expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].
I. Arefeva and S.I. Azakov, Renormalization and phase transition in the quantum C P(n−1) model (D = 2, 3), Nucl. Phys. B 162 (1980) 298 [INSPIRE].
T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawaki, Nonabelian Anomaly and Vector Mesons as Dynamical Gauge Bosons of Hidden Local Symmetries, Prog. Theor. Phys. 73 (1985) 926 [INSPIRE].
M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is rho Meson a Dynamical Gauge Boson of Hidden Local Symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [INSPIRE].
M. Bando, T. Kugo and K. Yamawaki, Nonlinear Realization and Hidden Local Symmetries, Phys. Rept. 164 (1988) 217 [INSPIRE].
Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1., Phys. Rev. 122 (1961) 345 [INSPIRE].
Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev. 124 (1961) 246 [INSPIRE].
D.J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotical ly Free Field Theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].
R.N. Lerner and J. McDonald, A Unitarity-Conserving Higgs Inflation Model, Phys. Rev. D 82 (2010) 103525 [arXiv:1005.2978] [INSPIRE].
G.F. Giudice and H.M. Lee, Unitarizing Higgs Inflation, Phys. Lett. B 694 (2011) 294 [arXiv:1010.1417] [INSPIRE].
H.M. Lee, Light inflaton completing Higgs inflation, Phys. Rev. D 98 (2018) 015020 [arXiv:1802.06174] [INSPIRE].
J.L.F. Barbón, J.A. Casas, J. Elias-Miro and J.R. Espinosa, Higgs Inflation as a Mirage, JHEP 09 (2015) 027 [arXiv:1501.02231] [INSPIRE].
L. Álvarez-Gaumé, A. Kehagias, C. Kounnas, D. Lüst and A. Riotto, Aspects of Quadratic Gravity, Fortsch. Phys. 64 (2016) 176 [arXiv:1505.07657] [INSPIRE].
S. Ketov, Quantum nonlinear sigma models: From quantum field theory to supersymmetry, conformal field theory, black holes and strings, Springer (2000) [INSPIRE].
R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].
Y. Ema, K. Mukaida and J. van de Vis, Renormalization Group Equations of Higgs-R2 Inflation, arXiv:2008.01096 [INSPIRE].
U. Aydemir, M.M. Anber and J.F. Donoghue, Self-healing of unitarity in effective field theories and the onset of new physics, Phys. Rev. D 86 (2012) 014025 [arXiv:1203.5153] [INSPIRE].
X. Calmet and R. Casadio, Self-healing of unitarity in Higgs inflation, Phys. Lett. B 734 (2014) 17 [arXiv:1310.7410] [INSPIRE].
T. Han and S. Willenbrock, Scale of quantum gravity, Phys. Lett. B 616 (2005) 215 [hep-ph/0404182] [INSPIRE].
G. Dvali, Black Holes and Large N Species Solution to the Hierarchy Problem, Fortsch. Phys. 58 (2010) 528 [arXiv:0706.2050] [INSPIRE].
T. Asaka, S. Iso, H. Kawai, K. Kohri, T. Noumi and T. Terada, Reinterpretation of the Starobinsky model, PTEP 2016 (2016) 123E01 [arXiv:1507.04344] [INSPIRE].
S. Pi, Y.-l. Zhang, Q.-G. Huang and M. Sasaki, Scalaron from R2 -gravity as a heavy field, JCAP 05 (2018) 042 [arXiv:1712.09896] [INSPIRE].
D.Y. Cheong, H.M. Lee and S.C. Park, Beyond the Starobinsky model for inflation, Phys. Lett. B 805 (2020) 135453 [arXiv:2002.07981] [INSPIRE].
F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].
A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 04 (2013) 140] [arXiv:1202.3415] [INSPIRE].
R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].
R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].
R. Nagai, M. Tanabashi, K. Tsumura and Y. Uchida, Symmetry and geometry in a generalized Higgs effective field theory: Finiteness of oblique corrections versus perturbative unitarity, Phys. Rev. D 100 (2019) 075020 [arXiv:1904.07618] [INSPIRE].
A. Helset, A. Martin and M. Trott, The Geometric Standard Model Effective Field Theory, JHEP 03 (2020) 163 [arXiv:2001.01453] [INSPIRE].
C.P. Burgess, H.M. Lee and M. Trott, Power-counting and the Validity of the Classical Approximation During Inflation, JHEP 09 (2009) 103 [arXiv:0902.4465] [INSPIRE].
J.L.F. Barbón and J.R. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009) 081302 [arXiv:0903.0355] [INSPIRE].
A. Kehagias, A. Moradinezhad Dizgah and A. Riotto, Remarks on the Starobinsky model of inflation and its descendants, Phys. Rev. D 89 (2014) 043527 [arXiv:1312.1155] [INSPIRE].
F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].
M.P. DeCross, D.I. Kaiser, A. Prabhu, C. Prescod-WEinstein and E.I. Sfakianakis, Preheating after Multifield Inflation with Nonminimal Couplings, I: Covariant Formalism and Attractor Behavior, Phys. Rev. D 97 (2018) 023526 [arXiv:1510.08553] [INSPIRE].
Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, Violent Preheating in Inflation with Nonminimal Coupling, JCAP 02 (2017) 045 [arXiv:1609.05209] [INSPIRE].
E.I. Sfakianakis and J. van de Vis, Preheating after Higgs Inflation: Self-Resonance and Gauge boson production, Phys. Rev. D 99 (2019) 083519 [arXiv:1810.01304] [INSPIRE].
D. Gorbunov and A. Tokareva, Scalaron the healer: removing the strong-coupling in the Higgs- and Higgs-dilaton inflations, Phys. Lett. B 788 (2019) 37 [arXiv:1807.02392] [INSPIRE].
S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].
M. He, R. Jinno, K. Kamada, S.C. Park, A.A. Starobinsky and J. Yokoyama, On the violent preheating in the mixed Higgs-R2 inflationary model, Phys. Lett. B 791 (2019) 36 [arXiv:1812.10099] [INSPIRE].
F. Bezrukov, D. Gorbunov, C. Shepherd and A. Tokareva, Some like it hot: R2 heals Higgs inflation, but does not cool it, Phys. Lett. B 795 (2019) 657 [arXiv:1904.04737] [INSPIRE].
J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210 (2017) 103 [arXiv:1601.05437] [INSPIRE].
S.N. Gupta, Theory of longitudinal photons in quantum electrodynamics, Proc. Phys. Soc. A 63 (1950) 681 [INSPIRE].
K. Bleuler, A New method of treatment of the longitudinal and scalar photons, Helv. Phys. Acta 23 (1950) 567 [INSPIRE].
T. Kugo and I. Ojima, Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem, Prog. Theor. Phys. Suppl. 66 (1979) 1 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2002.11739
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ema, Y., Mukaida, K. & van de Vis, J. Higgs inflation as nonlinear sigma model and scalaron as its σ-meson. J. High Energ. Phys. 2020, 11 (2020). https://doi.org/10.1007/JHEP11(2020)011
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2020)011